15,135 research outputs found

    Central limit theorem for exponentially quasi-local statistics of spin models on Cayley graphs

    Full text link
    Central limit theorems for linear statistics of lattice random fields (including spin models) are usually proven under suitable mixing conditions or quasi-associativity. Many interesting examples of spin models do not satisfy mixing conditions, and on the other hand, it does not seem easy to show central limit theorem for local statistics via quasi-associativity. In this work, we prove general central limit theorems for local statistics and exponentially quasi-local statistics of spin models on discrete Cayley graphs with polynomial growth. Further, we supplement these results by proving similar central limit theorems for random fields on discrete Cayley graphs and taking values in a countable space but under the stronger assumptions of {\alpha}-mixing (for local statistics) and exponential {\alpha}-mixing (for exponentially quasi-local statistics). All our central limit theorems assume a suitable variance lower bound like many others in the literature. We illustrate our general central limit theorem with specific examples of lattice spin models and statistics arising in computational topology, statistical physics and random networks. Examples of clustering spin models include quasi-associated spin models with fast decaying covariances like the off-critical Ising model, level sets of Gaussian random fields with fast decaying covariances like the massive Gaussian free field and determinantal point processes with fast decaying kernels. Examples of local statistics include intrinsic volumes, face counts, component counts of random cubical complexes while exponentially quasi-local statistics include nearest neighbour distances in spin models and Betti numbers of sub-critical random cubical complexes.Comment: Minor changes incorporated based on suggestions by referee

    Computational screening of magnetocaloric alloys

    Get PDF
    An exciting development over the past few decades has been the use of high-throughput computational screening as a means of identifying promising candidate materials for a variety of structural or functional properties. Experimentally, it is often found that the highest-performing materials contain substantial atomic site disorder. These are frequently overlooked in high-throughput computational searches however, due to difficulties in dealing with materials that do not possess simple, well-defined crystallographic unit cells. Here we demonstrate that the screening of magnetocaloric materials with the help of the density functional theory-based magnetic deformation proxy can be extended to systems with atomic site disorder. This is accomplished by thermodynamic averaging of the magnetic deformation for ordered supercells across a solid solution. We show that the highly non-monotonic magnetocaloric properties of the disordered solid solutions Mn(Co1x_{1-x}Fex_x)Ge and (Mn1x_{1-x}Nix_x)CoGe are successfully captured using this method.Comment: Main text: 8 pages, 6 figures. Supplemental Material: 2 pages, 2 figure

    Blade planform for a quiet helicopter

    Get PDF
    The effects of blade planform and tip speed on noise and performance for a Hughes 500 C rotor system were studied. A cursory examination of the effects of such planform shapes as regular, inverse, and no taper on the noise and performance of the rotor was conducted. It was found that a constant width wide chord planform at tower tip speed provided the best performance and lowest noise. The tapered planforms had lower performance figures due to the reduced solidity. However, some noise reductions were achieved

    Further evidence for intra-night optical variability of radio-quiet quasars

    Get PDF
    Although well established for BL Lac objects and radio-loud quasars, the occurrence of intra-night optical variability (INOV) in radio-quiet quasars is still debated, primarily since only a handful of INOV events with good statistical significance, albeit small amplitude, have been reported so far. This has motivated us to continue intra-night optical monitoring of bona-fide radio-quiet quasars (RQQs). Here we present the results for a sample of 11 RQQs monitored by us on 19 nights. On 5 of these nights a given RQQ was monitored simultaneously from two well separated observatories. In all, two clear cases and two probable case of INOV were detected. From these data, we estimate an INOV duty cycle of \sim8% for RQQs which would increase to 19% if the `probable variable' cases are also included. Such comparatively small INOV duty cycles for RQQs, together with the small INOV amplitudes (\sim1%), are in accord with the previously deduced characteristics of this phenomenon.Comment: 15 Pages, 4 Tables, 24 Figures; Accepted in BAS
    corecore