120 research outputs found
Solvation and Protonation of Coumarin 102 in Aqueous Media - a Fluorescence Spectroscopic and Theoretical Study
The ground and excited state protonation of Coumarin 102 (C102), a fluorescent probe applied frequently in heterogeneous systems with an aqueous phase, has been studied in aqueous solutions by spectroscopic experiments and theoretical calculations. For the dissociation constant of the protonated form in the ground state, was obtained from the absorption spectra, for the excited state dissociation constant was obtained from the fluorescence spectra. These values were closely reproduced by theoretical calculations via a thermodynamic cycle – the value of also by calculations via the Förster cycle - using an implicit-explicit solvation model (polarized continuum model + addition of a solvent molecule). The theoretical calculations indicated that (i) in the ground state C102 occurs primarily as a hydrogen bonded water complex, with the oxo group as the binding site, (ii) this hydrogen bond becomes stronger upon excitation; (iii) in the ground state the amino nitrogen atom, in the excited state the carboxy oxygen atom is the protonation site. A comprehensive analysis of fluorescence decay data yielded the values kpr = 3.271010 M-1 s 1 for the rate constants of excited state protonation, and kdpr = 2.78108 s-1 for the rate constant of the reverse process (kpr and kdpr were treated as independent parameters). This, considering the relatively long fluorescence lifetimes of neutral C102 (6.02 ns) and its protonated form (3.06 ns) in aqueous media, means that a quasi-equilibrium state of excited state proton transfer is reached in strongly acidic solutions
Interactions of Shiga-like toxin with human peripheral blood monocytes
The cytotoxic effect of Shiga-like toxin (Stx; produced by certain Escherichia coli strains) plays a central role in typical hemolytic uremic syndrome (HUS). It damages the renal endothelium by inhibiting the cellular protein synthesis. Also, the monocyte has a specific receptor for Stx but is not sensitive for the cytotoxic effect. In this work, monocytes were studied as a potential transporter for Stx to the renal endothelium. Coincubation of isolated human monocytes loaded with Stx and target cells (vero cells and human umbilical vascular endothelial cells) were performed. Transfer was determined by measuring the protein synthesis of target cells and by flow cytometry. Furthermore, the effect of a temperature shift on loaded monocytes was investigated. Stx-loaded monocytes reduced the protein synthesis of target cells. After adding an antibody against Stx, incomplete recovery occurred. Also, adding only the supernatant of coincubation was followed by protein synthesis inhibition. Stx detached from its receptor on the monocyte after a change in temperature, and no release was detected without this temperature shift. Although the monocyte plays an important role in the pathogenesis of HUS, it has no role in the transfer of Stx
Molecular mechanism of the priming by jasmonic acid of specific dehydration stress response genes in Arabidopsis
PHYSIOLOGICAL RESPONSES OF DWARF COCONUT PLANTS UNDER WATER DEFICIT IN SALT-AFFECTED SOILS
A gene expression microarray for Nicotiana benthamiana based on de novo transcriptome sequence assembly
Contrasting transcriptional responses of PYR1/PYL/RCAR ABA receptors to ABA or dehydration stress between maize seedling leaves and roots
Solvation and Protonation of Coumarin 102 in Aqueous Media: A Fluorescence Spectroscopic and Theoretical Study
How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory
O-hydroxy schiff bases derived from 2-hydroxy-4-methoxy benzaldehyde: Synthesis, x-Ray studies and hydrogen bonding attributes
The o-hydroxy Schiff bases consisting of N’-[(Z)-(2-hydroxy-4-methoxyphenyl)methylidene]pyridine-4-carbohydrazide and N’-[(Z)-(2-hydroxy-4-methoxyphenyl)methylidene]pyridine-3-carbohydrazidewere prepared by reaction of isonicotinic acid hydrazide and nicotinicacid hydrazide by employing 2-hydroxy-4-methoxy benzaldehyde.The spectroscopic techniques, X-ray crystal structure determinationas well as DFT calculations have been carried out to shed light on thenature of hydrogen bonding. The both experimental and theoreticalinvestigations demonstrate the presence of intramolecular neutralhydrogen bonding (enol-imine type) in these molecule
Differentiation-associated toxin receptor modulation, cytokine production, and sensitivity to Shiga-like toxins in human monocytes and monocytic cell lines
Infections with Shiga toxin-producing Shigella dysenteriae type 1 or Shiga-like toxin (SLT)-producing Escherichia coli cause bloody diarrhea and are associated with an increased risk of acute renal failure and severe neurological complications. Histopathological examination of human and animal tissues suggests that the target cells for toxin action are vascular endothelial cells. Proinflammatory cytokines regulate endothelial cell membrane expression of the glycolipid globotriaosylceramide (Gb(3)) which serves as the toxin receptor, suggesting that the host response to the toxins or other bacterial products may contribute to pathogenesis by regulating target cell sensitivity to the toxins. We examined the effects of purified SLTs on human peripheral blood monocytes (PBMn) and two monocytic cell lines. Undifferentiated THP-1 cells were sensitive to SLTs. Treatment of the cells with a number of differentiation factors resulted in increased toxin resistance which was associated with decreased toxin receptor expression. U-937 cells, irrespective of maturation state, and PBMn were resistant to the toxins. U-937 cells expressed low levels of GB(3), and toxin receptor expression was not altered during differentiation. Treatment of monocytic cells with tumor necrosis factor alpha (TNF-alpha) did not markedly increase sensitivity or alter toxin receptor expression. Undifferentiated monocytic cells failed to synthesize TNF and interleukin 1beta when treated with sublethal concentrations of SLT type I (SLT-I), whereas cells treated with 12-0-tetradecanoylphorbol-13-acetate acquired the ability to produce cytokines when stimulated with SLT-I. When stimulated with SLT-I, U-937 cells produced lower levels of TNF than PBMn and THP-1 cells did.</jats:p
- …
