769 research outputs found

    Effects of using different plasmonic metals in metal/dielectric/metal subwavelength waveguides on guided dispersion characteristics

    Full text link
    The fundamental guided dispersion characteristics of guided light in a subwavelength dielectric slit channel embedded by two different plasmonic metals are investigated when varying the gap width. As a result, an overall and salient picture of the guided dispersion characteristics is obtained over a wide spectrum range below and above the plasma frequencies of the two different plasmonic metals, which is important preliminary information for analyzing this type of subwavelength waveguide. In particular, the effects of using two different metals on the guided mode dispersions are emphasized in comparison with the effects of using the same plasmonic metal cladding.Comment: 13 pages, 3 figures, typos corrected, reference added, text modifie

    Prediction of subgap states in Zn- and Sn-based oxides using various exchange-correlation functionals

    Get PDF
    We present a density-functional-theory analysis of crystalline and amorphous Zn- and Sn-based oxide systems which focuses on the electronic defect states within the band gap. A comparison of these electronic levels reveals that the hybrid functionals PBE0, HSE06, or B3LYP agree with a self-interaction corrected (SIC) local-density-approximation functional on occupied defect levels when similar treatments of the self-interaction are considered. However, for unoccupied levels, the hybrid functionals and the SIC approach lead to very different predictions. We show that a prerequisite for the determination of the energetic position of subgap states in these oxides is that a functional needs to predict correctly the electronic band structure over a wide energy range and not just close to the band gap. We conclude that for accurate defect levels, an adequate treatment of the self-interaction problem is required especially in the presence of nearby metal-metal interactions.Financial support for this work was provided by the European Commission through Contract No. NMP3-LA-2010-246334 (ORAMA). The calculations at Cambridge were performed using the High Performance Computing Facility, Darwin, and also the UK national high performance computing service ARCHER, for which access was obtained via the UKCP consortium and funded by EPSRC Grant No. EP/K014560/1.Phys. Rev. B 90, 195142 – Published 21 November 2014 ©2014 American Physical Society, http://dx.doi.org/10.1103/PhysRevB.90.19514

    Cefalea racimos en una niña de 3 años

    Get PDF
    Summary. Introduction. Cluster headache is a rare disorder in childhood. We identified, in the literature, 64 cases of cluster headache starting at or before 18 years (only 17 of them began before 10 years old). All patients met the criteria of the International Headache Society. Russell et al demonstrated recently that the cluster headache is an inherited disorder in some families. They conclude that the gene is present in 3 to 4% of males and 7 to 10% of females with cluster headache and that it has an autossomal dominant transmission. Clinical case. The authors report the clinical case of a five-year-old child with cluster headache starting at three years. This paper reviews the differential diagnosis and the treatment of cluster headach

    B3LYP calculations of cerium oxides RID C-3994-2009

    Get PDF
    In this paper we evaluate the performance of density functional theory with the B3LYP functional for calculations on ceria (CeO2) and cerium sesquioxide (Ce2O3). We demonstrate that B3LYP is able to describe CeO2 and Ce2O3 reasonably well. When compared to other functionals, B3LYP performs slightly better than the hybrid functional PBE0 for the electronic properties but slightly worse for the structural properties, although neither performs as well as LDA+U(U=6 eV) or PBE+U(U=5 eV).We also make an extensive comparison of atomic basis sets suitable for periodic calculations of these cerium oxides. Here we conclude that there is currently only one type of cerium basis set available in the literature that is able to give a reasonable description of the electronic structure of both CeO2 and Ce2O3. These basis sets are based on a 28 electron effective core potential (ECP) and 30 electrons are attributed to the valence space of cerium. Basis sets based on 46 electron ECPs fail for these materials

    Time-Dependent Current Partition in Mesoscopic Conductors

    Full text link
    The currents at the terminals of a mesoscopic conductor are evaluated in the presence of slowly oscillating potentials applied to the contacts of the sample. The need to find a charge and current conserving solution to this dynamic current partition problem is emphasized. We present results for the electro-chemical admittance describing the long range Coulomb interaction in a Hartree approach. For multiply connected samples we discuss the symmetry of the admittance under reversal of an Aharonov-Bohm flux.Comment: 22 pages, 3 figures upon request, IBM RC 1971

    East Asia and the global/transatlantic/Western crisis

    Get PDF
    This paper introduces the special collection on East Asia and the Global Crisis. After justifying why a focus on East Asia is appropriate, it draws out the main themes that run through the individual contributions. These are the extent to which the region is decoupling from the global economy (or the West), the increasing legitimacy of statist alternatives to neoliberal development strategies, and the impact of crises on the definition of ―region‖ and the functioning of regional institutions and governance mechanisms

    Effect of the Coulomb repulsion on the {\it ac} transport through a quantum dot

    Full text link
    We calculate in a linear response the admittance of a quantum dot out of equilibrium. The interaction between two electrons with opposite spins simultaneously residing on the resonant level is modeled by an Anderson Hamiltonian. The electron correlations lead to the appearence of a new feature in the frequency dependence of the conductance. For certain parameter values there are two crossover frequencies between a capacitive and an inductive behavior of the imaginary part of the admittance. The experimental implications of the obtained results are briefly discussed.Comment: 13 pages, REVTEX 3.0, 2 .ps figures from [email protected], NUB-308

    Position Reconstruction in Drift Chambers operated with Xe, CO2 (15%)

    Full text link
    We present measurements of position and angular resolution of drift chambers operated with a Xe,CO2_2(15%) mixture. The results are compared to Monte Carlo simulations and important systematic effects, in particular the dispersive nature of the absorption of transition radiation and non-linearities, are discussed. The measurements were carried out with prototype drift chambers of the ALICE Transition Radiation Detector, but our findings can be generalized to other drift chambers with similar geometry, where the electron drift is perpendicular to the wire planes.Comment: 30 pages, 18 figure

    Simulations of electromagnetic effects in high frequency capacitively coupled discharges using the Darwin approximation

    Full text link
    The Darwin approximation is investigated for its possible use in simulation of electromagnetic effects in large size, high frequency capacitively coupled discharges. The approximation is utilized within the framework of two different fluid models which are applied to typical cases showing pronounced standing wave and skin effects. With the first model it is demonstrated that Darwin approximation is valid for treatment of such effects in the range of parameters under consideration. The second approach, a reduced nonlinear Darwin approximation-based model, shows that the electromagnetic phenomena persist in a more realistic setting. The Darwin approximation offers a simple and efficient way of carrying out electromagnetic simulations as it removes the Courant condition plaguing explicit electromagnetic algorithms and can be implemented as a straightforward modification of electrostatic algorithms. The algorithm described here avoids iterative schemes needed for the divergence cleaning and represents a fast and efficient solver, which can be used in fluid and kinetic models for self-consistent description of technical plasmas exhibiting certain electromagnetic activity
    corecore