13,047 research outputs found
A search for water maser emission toward obscured post-AGB star and planetary nebula candidates
Water maser emission at 22 GHz is a useful probe to study the transition
between the nearly spherical mass-loss in the AGB to a collimated one in the
post-AGB phase. In their turn, collimated jets in the post-AGB phase could
determine the shape of planetary nebulae (PNe) once photoionization starts. We
intend to find new cases of post-AGB stars and PNe with water maser emission,
including water fountains or water-maser-emitting PNe. We observed water maser
emission in a sample of 133 objects, with a significant fraction being post-AGB
and young PN candidate sources with strong obscuration. We detected this
emission in 15 of them, of which seven are reported here for the first time. We
identified three water fountain candidates: IRAS 17291-2147, with a total
velocity spread of ~96 km/s in its water maser components and two sources (IRAS
17021-3109 and IRAS 17348-2906) that show water maser emission outside the
velocity range covered by OH masers. We have also identified IRAS 17393-2727 as
a possible new water-maser-emitting PN. The detection rate is higher in
obscured objects (14%) than in those with optical counterparts (7%), consistent
with previous results. Water maser emission seems to be common in objects that
are bipolar in the near-IR (43% detection rate). The water maser spectra of
water fountain candidates like IRAS 17291-2147 show significantly less maser
components than others (e.g., IRAS 18113-2503). We speculate that most
post-AGBs may show water maser emission with wide enough velocity spread (> 100
km/s) when observed with enough sensitivity and/or for long enough periods of
time. Therefore, it may be necessary to single out a special group of "water
fountains", probably defined by their high maser luminosities. We also suggest
that the presence of both water and OH masers in a PN is a better tracer of its
youth, rather than the presence of just one of these species.Comment: To be published in Astronomy & Astrophysics. 16 pages, 1 figure
(spanning 5 pages). This version includes some minor language corrections and
fixes some errors in Table
Chiral Symmetry and light resonances in hot and dense matter
We present a study of the scattering amplitude in the and
channels at finite temperature and nuclear density within a chiral
unitary framework. Meson resonances are dynamically generated in our approach,
which allows us to analyze the behavior of their associated scattering poles
when the system is driven towards chiral symmetry restoration. Medium effects
are incorporated in three ways: (a) by thermal corrections of the unitarized
scattering amplitudes, (b) by finite nuclear density effects associated to a
renormalization of the pion decay constant, and complementarily (c) by
extending our calculation of the scalar-isoscalar channel to account for finite
nuclear density and temperature effects in a microscopic many-body
implementation of pion dynamics. Our results are discussed in connection with
several phenomenological aspects relevant for nuclear matter and Heavy-Ion
Collision experiments, such as mass scaling vs broadening from dilepton
spectra and chiral restoration signals in the channel. We also
elaborate on the molecular nature of resonances.Comment: 14 pages, 14 figures. Contribution to Hard Probes 2008, Illa de A
Toxa, Spain, June 8th-14th 200
A new multicompartmental reaction-diffusion modeling method links transient membrane attachment of E. coli MinE to E-ring formation
Many important cellular processes are regulated by reaction-diffusion (RD) of molecules that takes place both in the cytoplasm and on the membrane. To model and analyze such multicompartmental processes, we developed a lattice-based Monte Carlo method, Spatiocyte that supports RD in volume and surface compartments at single molecule resolution. Stochasticity in RD and the excluded volume effect brought by intracellular molecular crowding, both of which can significantly affect RD and thus, cellular processes, are also supported. We verified the method by comparing simulation results of diffusion, irreversible and reversible reactions with the predicted analytical and best available numerical solutions. Moreover, to directly compare the localization patterns of molecules in fluorescence microscopy images with simulation, we devised a visualization method that mimics the microphotography process by showing the trajectory of simulated molecules averaged according to the camera exposure time. In the rod-shaped bacterium _Escherichia coli_, the division site is suppressed at the cell poles by periodic pole-to-pole oscillations of the Min proteins (MinC, MinD and MinE) arising from carefully orchestrated RD in both cytoplasm and membrane compartments. Using Spatiocyte we could model and reproduce the _in vivo_ MinDE localization dynamics by accounting for the established properties of MinE. Our results suggest that the MinE ring, which is essential in preventing polar septation, is largely composed of MinE that is transiently attached to the membrane independently after recruited by MinD. Overall, Spatiocyte allows simulation and visualization of complex spatial and reaction-diffusion mediated cellular processes in volumes and surfaces. As we showed, it can potentially provide mechanistic insights otherwise difficult to obtain experimentally
Accelerated amyloid deposition, neurofibrillary degeneration and neuronal loss in double mutant APP/tau transgenic mice
Even though the idea that amyloid beta peptide accumulation is the primary event in the pathogenesis of Alzheimer's disease has become the leading hypothesis, the causal link between aberrant amyloid precursor protein processing and tau alterations in this type of dementia remains controversial. We further investigated the role of beta-amyloid production/deposition in tau pathology and neuronal cell death in the mouse brain by crossing Tg2576 and VLW lines expressing human mutant amyloid precursor protein and human mutant tau, respectively. The resulting double transgenic mice showed enhanced amyloid deposition accompanied by neurofibrillary degeneration and overt neuronal loss in selectively vulnerable brain limbic areas. These findings challenge the idea that tau pathology in Alzheimer's disease is merely a downstream effect of amyloid production/deposition and suggest that reciprocal interactions between beta-amyloid and tau alterations may take place in vivo
Ultrahigh-energy neutrino follow-up of Gravitational Wave events GW150914 and GW151226 with the Pierre Auger Observatory
On September 14, 2015 the Advanced LIGO detectors observed their first
gravitational-wave (GW) transient GW150914. This was followed by a second GW
event observed on December 26, 2015. Both events were inferred to have arisen
from the merger of black holes in binary systems. Such a system may emit
neutrinos if there are magnetic fields and disk debris remaining from the
formation of the two black holes. With the surface detector array of the Pierre
Auger Observatory we can search for neutrinos with energy above 100 PeV from
point-like sources across the sky with equatorial declination from about -65
deg. to +60 deg., and in particular from a fraction of the 90% confidence-level
(CL) inferred positions in the sky of GW150914 and GW151226. A targeted search
for highly-inclined extensive air showers, produced either by interactions of
downward-going neutrinos of all flavors in the atmosphere or by the decays of
tau leptons originating from tau-neutrino interactions in the Earth's crust
(Earth-skimming neutrinos), yielded no candidates in the Auger data collected
within s around or 1 day after the coordinated universal time (UTC)
of GW150914 and GW151226, as well as in the same search periods relative to the
UTC time of the GW candidate event LVT151012. From the non-observation we
constrain the amount of energy radiated in ultrahigh-energy neutrinos from such
remarkable events.Comment: Published version. Added journal reference and DOI. Added Report
Numbe
Height and timing of growth spurt during puberty in young people living with vertically acquired HIV in Europe and Thailand.
OBJECTIVE: The aim of this study was to describe growth during puberty in young people with vertically acquired HIV. DESIGN: Pooled data from 12 paediatric HIV cohorts in Europe and Thailand. METHODS: One thousand and ninety-four children initiating a nonnucleoside reverse transcriptase inhibitor or boosted protease inhibitor based regimen aged 1-10 years were included. Super Imposition by Translation And Rotation (SITAR) models described growth from age 8 years using three parameters (average height, timing and shape of the growth spurt), dependent on age and height-for-age z-score (HAZ) (WHO references) at antiretroviral therapy (ART) initiation. Multivariate regression explored characteristics associated with these three parameters. RESULTS: At ART initiation, median age and HAZ was 6.4 [interquartile range (IQR): 2.8, 9.0] years and -1.2 (IQR: -2.3 to -0.2), respectively. Median follow-up was 9.1 (IQR: 6.9, 11.4) years. In girls, older age and lower HAZ at ART initiation were independently associated with a growth spurt which occurred 0.41 (95% confidence interval 0.20-0.62) years later in children starting ART age 6 to 10 years compared with 1 to 2 years and 1.50 (1.21-1.78) years later in those starting with HAZ less than -3 compared with HAZ at least -1. Later growth spurts in girls resulted in continued height growth into later adolescence. In boys starting ART with HAZ less than -1, growth spurts were later in children starting ART in the oldest age group, but for HAZ at least -1, there was no association with age. Girls and boys who initiated ART with HAZ at least -1 maintained a similar height to the WHO reference mean. CONCLUSION: Stunting at ART initiation was associated with later growth spurts in girls. Children with HAZ at least -1 at ART initiation grew in height at the level expected in HIV negative children of a comparable age
Effectiveness, cost-effectiveness and cost-benefit of a single annual professional intervention for the prevention of childhood dental caries in a remote rural Indigenous community
Background
The aim of the study is to reduce the high prevalence of tooth decay in children in a remote, rural Indigenous community in Australia, by application of a single annual dental preventive intervention. The study seeks to (1) assess the effectiveness of an annual oral health preventive intervention in slowing the incidence of dental caries in children in this community, (2) identify the mediating role of known risk factors for dental caries and (3) assess the cost-effectiveness and cost-benefit of the intervention.
Methods/design
The intervention is novel in that most dental preventive interventions require regular re-application, which is not possible in resource constrained communities. While tooth decay is preventable, self-care and healthy habits are lacking in these communities, placing more emphasis on health services to deliver an effective dental preventive intervention. Importantly, the study will assess cost-benefit and cost-effectiveness for broader implementation across similar communities in Australia and internationally.
Discussion
There is an urgent need to reduce the burden of dental decay in these communities, by implementing effective, cost-effective, feasible and sustainable dental prevention programs. Expected outcomes of this study include improved oral and general health of children within the community; an understanding of the costs associated with the intervention provided, and its comparison with the costs of allowing new lesions to develop, with associated treatment costs. Findings should be generalisable to similar communities around the world.
The research is registered with the Australian New Zealand Clinical Trials Registry (ANZCTR), registration number ACTRN12615000693527; date of registration: 3rd July 2015
Measurement of the mass and lifetime of the baryon
A proton-proton collision data sample, corresponding to an integrated
luminosity of 3 fb collected by LHCb at and 8 TeV, is used
to reconstruct , decays. Using the , decay mode for calibration, the lifetime ratio and absolute
lifetime of the baryon are measured to be \begin{align*}
\frac{\tau_{\Omega_b^-}}{\tau_{\Xi_b^-}} &= 1.11\pm0.16\pm0.03, \\
\tau_{\Omega_b^-} &= 1.78\pm0.26\pm0.05\pm0.06~{\rm ps}, \end{align*} where the
uncertainties are statistical, systematic and from the calibration mode (for
only). A measurement is also made of the mass difference,
, and the corresponding mass, which
yields \begin{align*} m_{\Omega_b^-}-m_{\Xi_b^-} &= 247.4\pm3.2\pm0.5~{\rm
MeV}/c^2, \\ m_{\Omega_b^-} &= 6045.1\pm3.2\pm 0.5\pm0.6~{\rm MeV}/c^2.
\end{align*} These results are consistent with previous measurements.Comment: 11 pages, 5 figures, All figures and tables, along with any
supplementary material and additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-008.htm
Neutron structure function and inclusive DIS from H-3 and He-3 at large Bjorken-x
A detailed study of inclusive deep inelastic scattering (DIS) from mirror A =
3 nuclei at large values of the Bjorken variable x is presented. The main
purpose is to estimate the theoretical uncertainties on the extraction of the
neutron DIS structure function from such nuclear measurements. On one hand,
within models in which no modification of the bound nucleon structure functions
is taken into account, we have investigated the possible uncertainties arising
from: i) charge symmetry breaking terms in the nucleon-nucleon interaction, ii)
finite Q**2 effects neglected in the Bjorken limit, iii) the role of different
prescriptions for the nucleon Spectral Function normalization providing baryon
number conservation, and iv) the differences between the virtual nucleon and
light cone formalisms. Although these effects have been not yet considered in
existing analyses, our conclusion is that all these effects cancel at the level
of ~ 1% for x < 0.75 in overall agreement with previous findings. On the other
hand we have considered several models in which the modification of the bound
nucleon structure functions is accounted for to describe the EMC effect in DIS
scattering from nuclei. It turns out that within these models the cancellation
of nuclear effects is expected to occur only at a level of ~ 3%, leading to an
accuracy of ~ 12 % in the extraction of the neutron to proton structure
function ratio at x ~ 0.7 -0.8$. Another consequence of considering a broad
range of models of the EMC effect is that the previously suggested iteration
procedure does not improve the accuracy of the extraction of the neutron to
proton structure function ratio.Comment: revised version to appear in Phys. Rev. C; main modifications in
Section 4; no change in the conclusion
- …
