7,720 research outputs found
Systematic review of hospital readmissions in stroke patients
Background Previous evidence on factors and causes of readmissions associated with high-impact users of stroke is scanty. The aim of the study was to investigate common causes and pattern of short- and long-term readmissions stroke patients by conducting a systematic review of studies using hospital administrative data. Common risk factors associated with the change of readmission rate were also examined. Methods The literature search was conducted from 15th February to 15th March 2016 using various databases, such as Medline, Embase, and Web of Science. Results There were total of 24 studies (n=2,126,617) included in the review. Only 4 studies assessed causes of readmissions in stroke patients with the follow-up duration from 30 days to 5 years. Common causes of readmissions in majority of the studies were recurrent stroke, infections and cardiac conditions. Common patient-related risk factors associated with increased readmission rate were age and history of coronary heart disease, heart failure, renal disease, respiratory disease, peripheral arterial disease and diabetes. Among stroke-related factors, length of stay of index stroke admission was associated with increased readmission rate, followed by bowel incontinence, feeding tube and urinary catheter. Conclusion Although risk factors and common causes of readmission were identified, but none of the previous studies investigated causes and their sequence of readmissions among high-impact stroke users
Transition Property for -Power Free Languages with and Letters
In 1985, Restivo and Salemi presented a list of five problems concerning
power free languages. Problem states: Given -power-free words
and , decide whether there is a transition from to . Problem
states: Given -power-free words and , find a transition word
, if it exists.
Let denote an alphabet with letters. Let denote
the -power free language over the alphabet , where
is a rational number or a rational "number with ". If is a "number
with " then suppose and . If is "only" a
number then suppose and or and . We show
that: If is a right extendable word in and
is a left extendable word in then there is a
(transition) word such that . We also show a
construction of the word
Heat and fluid flow in a scraped-surface heat exchanger containing a fluid with temperature-dependent viscosity
Scraped-surface heat exchangers (SSHEs) are extensively used in a wide variety of industrial settings where the continuous processing of fluids and fluid-like materials is involved. The steady non-isothermal flow of a Newtonian fluid with temperature-dependent viscosity in a narrow-gap SSHE when a constant temperature difference is imposed across the gap between the rotor and the stator is investigated. The mathematical model is formulated and the exact analytical solutions for the heat and fluid flow of a fluid with a general dependence of viscosity on temperature for a general blade shape are obtained. These solutions are then presented for the specific case of an exponential dependence of viscosity on temperature. Asymptotic methods are employed to investigate the behaviour of the solutions in several special limiting geometries and in the limits of weak and strong thermoviscosity. In particular, in the limit of strong thermoviscosity (i.e., strong heating or cooling and/or strong dependence of viscosity on temperature) the transverse and axial velocities become uniform in the bulk of the flow with boundary layers forming either just below the blade and just below the stationary upper wall or just above the blade and just above the moving lower wall. Results are presented for the most realistic case of a linear blade which illustrate the effect of varying the thermoviscosity of the fluid and the geometry of the SSHE on the flow
Spatially Resolved Magnetic Field Structure in the Disk of a T Tauri Star
Magnetic fields in accretion disks play a dominant role during the star
formation process but have hitherto been observationally poorly constrained.
Field strengths have been inferred on T Tauri stars themselves and possibly in
the innermost part of the accretion disk, but the strength and morphology of
the field in the bulk of the disk have not been observed. Unresolved
measurements of polarized emission (arising from elongated dust grains aligned
perpendicular to the field) imply average fields aligned with the disks.
Theoretically, the fields are expected to be largely toroidal, poloidal, or a
mixture of the two, which imply different mechanisms for transporting angular
momentum in the disks of actively accreting young stars such as HL Tau. Here we
report resolved measurements of the polarized 1.25 mm continuum emission from
HL Tau's disk. The magnetic field on a scale of 80 AU is coincident with the
major axis (~210 AU diameter) of the disk. From this we conclude that the
magnetic field inside the disk at this scale cannot be dominated by a vertical
component, though a purely toroidal field does not fit the data well either.
The unexpected morphology suggests that the magnetic field's role for the
accretion of a T Tauri star is more complex than the current theoretical
understanding.Comment: Accepted for publication in Natur
Interobserver agreement of radiologists assessing the response of rectal cancers to preoperative chemoradiation using the MRI tumour regression grading (mrTRG)
AIM:
To investigate whether the magnetic resonance imaging (MRI) tumour regression grading (mrTRG) scale can be taught effectively resulting in a clinically reasonable interobserver agreement (>0.4; moderate to near perfect agreement).
MATERIALS AND METHODS:
This study examines the interobserver agreement of mrTRG, between 35 radiologists and a central reviewer. Two workshops were organised for radiologists to assess regression of rectal cancers on MRI staging scans. A range of mrTRGs on 12 patient scans were used for assessment.
RESULTS:
Kappa agreement ranged from 0.14–0.82 with a median value of 0.57 (95% CI: 0.37–0.77) indicating good overall agreement. Eight (26%) radiologists had very good/near perfect agreement (κ>0.8). Six (19%) radiologists had good agreement (0.8≥κ>0.6) and a further 12 (39%) had moderate agreement (0.6≥κ>0.4). Five (16%) radiologists had a fair agreement (0.4≥κ>0.2) and two had poor agreement (0.2>κ). There was a tendency towards good agreement (skewness: 0.92). In 65.9% and 90% of cases the radiologists were able to correctly highlight good and poor responders, respectively.
CONCLUSIONS:
The assessment of the response of rectal cancers to chemoradiation therapy may be performed effectively using mrTRG. Radiologists can be taught the mrTRG scale. Even with minimal training, good agreement with the central reviewer along with effective differentiation between good and intermediate/poor responders can be achieved. Focus should be on facilitating the identification of good responders. It is predicted that with more intensive interactive case-based learning a κ>0.8 is likely to be achieved. Testing and retesting is recommended
Genetic dissection of photoperiod response based on GWAS of pre-anthesis phase duration in spring barley
Heading time is a complex trait, and natural variation in photoperiod responses is a major factor controlling time to heading, adaptation and grain yield. In barley, previous heading time studies have been mainly conducted under field conditions to measure total days to heading. We followed a novel approach and studied the natural variation of time to heading in a world-wide spring barley collection (218 accessions), comprising of 95 photoperiod-sensitive (Ppd-H1) and 123 accessions with reduced photoperiod sensitivity (ppd-H1) to long-day (LD) through dissecting pre-anthesis development into four major stages and sub-phases. The study was conducted under greenhouse (GH) conditions (LD; 16/8 h; ∼20/∼16°C day/night). Genotyping was performed using a genome-wide high density 9K single nucleotide polymorphisms (SNPs) chip which assayed 7842 SNPs. We used the barley physical map to identify candidate genes underlying genome-wide association scans (GWAS). GWAS for pre-anthesis stages/sub-phases in each photoperiod group provided great power for partitioning genetic effects on floral initiation and heading time. In addition to major genes known to regulate heading time under field conditions, several novel QTL with medium to high effects, including new QTL having major effects on developmental stages/sub-phases were found to be associated in this study. For example, highly associated SNPs tagged the physical regions around HvCO1 (barley CONSTANS1) and BFL (BARLEY FLORICAULA/LEAFY) genes. Based upon our GWAS analysis, we propose a new genetic network model for each photoperiod group, which includes several newly identified genes, such as several HvCO-like genes, belonging to different heading time pathways in barley
Tribological properties of room temperature fluorinated graphite heat-treated under fluorine atmosphere
This work is concerned with the study of the tribologic properties of room temperature fluorinated graphite heat-treated under fluorine atmosphere. The fluorinated compounds all present good intrinsic friction properties (friction coefficient in the range 0.05–0.09). The tribologic performances are optimized if the materials present remaining graphitic domains (influenced by the presence of intercalated fluorinated species) whereas the perfluorinated compounds, where the fluorocarbon layers are corrugated (armchair configuration of the saturated carbon rings) present higher friction coefficients. Raman analyses reveal that the friction process induces severe changes in the materials structure especially the partial re-building of graphitic domains in the case of perfluorinated compounds which explains the improvement of μ during the friction tests for these last materials
Cytoplasmic p53 couples oncogene-driven glucose metabolism to apoptosis and is a therapeutic target in glioblastoma.
Cross-talk among oncogenic signaling and metabolic pathways may create opportunities for new therapeutic strategies in cancer. Here we show that although acute inhibition of EGFR-driven glucose metabolism induces only minimal cell death, it lowers the apoptotic threshold in a subset of patient-derived glioblastoma (GBM) cells. Mechanistic studies revealed that after attenuated glucose consumption, Bcl-xL blocks cytoplasmic p53 from triggering intrinsic apoptosis. Consequently, targeting of EGFR-driven glucose metabolism in combination with pharmacological stabilization of p53 with the brain-penetrant small molecule idasanutlin resulted in synthetic lethality in orthotopic glioblastoma xenograft models. Notably, neither the degree of EGFR-signaling inhibition nor genetic analysis of EGFR was sufficient to predict sensitivity to this therapeutic combination. However, detection of rapid inhibitory effects on [18F]fluorodeoxyglucose uptake, assessed through noninvasive positron emission tomography, was an effective predictive biomarker of response in vivo. Together, these studies identify a crucial link among oncogene signaling, glucose metabolism, and cytoplasmic p53, which may potentially be exploited for combination therapy in GBM and possibly other malignancies
Neutron Majorana mass from exotic instantons
We show how a Majorana mass for the Neutron could result from
non-perturbative quantum gravity effects peculiar to string theory. In
particular, "exotic instantons" in un-oriented string compactifications with
D-branes extending the (supersymmetric) standard model could indirectly produce
an effective operator delta{m} n^t n+h.c. In a specific model with an extra
vector-like pair of `quarks', acquiring a large mass proportional to the string
mass scale (exponentially suppressed by a function of the string moduli
fields), delta{m} can turn out to be as low as 10^{-24}-10^{-25} eV. The
induced neutron-antineutron oscillations could take place with a time scale
tau_{n\bar{n}} > 10^8 s, that could be tested by the next generation of
experiments. On the other hand, proton decay and FCNC's are automatically
strongly suppressed and are compatible with the current experimental limits.
Depending on the number of brane intersections, the model may also lead to the
generation of Majorana masses for R-handed neutrini. Our proposal could also
suggest neutron-neutralino or neutron-axino oscillations, with implications in
UCN, Dark Matter Direct Detection, UHECR and Neutron-Antineutron oscillations.
This suggests to improve the limits on neutron-antineutron oscillations, as a
possible test of string theory and quantum gravity.Comment: 35 pages, 11 figures. More comments on neutron-neutralino mixin
Genetic determinants of co-accessible chromatin regions in activated T cells across humans.
Over 90% of genetic variants associated with complex human traits map to non-coding regions, but little is understood about how they modulate gene regulation in health and disease. One possible mechanism is that genetic variants affect the activity of one or more cis-regulatory elements leading to gene expression variation in specific cell types. To identify such cases, we analyzed ATAC-seq and RNA-seq profiles from stimulated primary CD4+ T cells in up to 105 healthy donors. We found that regions of accessible chromatin (ATAC-peaks) are co-accessible at kilobase and megabase resolution, consistent with the three-dimensional chromatin organization measured by in situ Hi-C in T cells. Fifteen percent of genetic variants located within ATAC-peaks affected the accessibility of the corresponding peak (local-ATAC-QTLs). Local-ATAC-QTLs have the largest effects on co-accessible peaks, are associated with gene expression and are enriched for autoimmune disease variants. Our results provide insights into how natural genetic variants modulate cis-regulatory elements, in isolation or in concert, to influence gene expression
- …
