165 research outputs found
Variação temporal e espacial de fluxo evasivo de CO2 e exportação de carbono orgânico dissolvido em pequenas bacias de drenagem na Amazônia Oriental.
Poster 254. Disponível também on-lie
Numerical simulations of the Warm-Hot Intergalactic Medium
In this paper we review the current predictions of numerical simulations for
the origin and observability of the warm hot intergalactic medium (WHIM), the
diffuse gas that contains up to 50 per cent of the baryons at z~0. During
structure formation, gravitational accretion shocks emerging from collapsing
regions gradually heat the intergalactic medium (IGM) to temperatures in the
range T~10^5-10^7 K. The WHIM is predicted to radiate most of its energy in the
ultraviolet (UV) and X-ray bands and to contribute a significant fraction of
the soft X-ray background emission. While O VI and C IV absorption systems
arising in the cooler fraction of the WHIM with T~10^5-10^5.5 K are seen in
FUSE and HST observations, models agree that current X-ray telescopes such as
Chandra and XMM-Newton do not have enough sensitivity to detect the hotter
WHIM. However, future missions such as Constellation-X and XEUS might be able
to detect both emission lines and absorption systems from highly ionised atoms
such as O VII, O VIII and Fe XVII.Comment: 18 pages, 5 figures, accepted for publication in Space Science
Reviews, special issue "Clusters of galaxies: beyond the thermal view",
Editor J.S. Kaastra, Chapter 14; work done by an international team at the
International Space Science Institute (ISSI), Bern, organised by J.S.
Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke
Laser linking of metal interconnect : process considerations and failure analysis using focused ion beam milling
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 1995.Includes bibliographical references (leaves 104-106).by Roy L. Rasera.M.S
Haloes gone MAD: The Halo-Finder Comparison Project
[abridged] We present a detailed comparison of fundamental dark matter halo
properties retrieved by a substantial number of different halo finders. These
codes span a wide range of techniques including friends-of-friends (FOF),
spherical-overdensity (SO) and phase-space based algorithms. We further
introduce a robust (and publicly available) suite of test scenarios that allows
halo finder developers to compare the performance of their codes against those
presented here. This set includes mock haloes containing various levels and
distributions of substructure at a range of resolutions as well as a
cosmological simulation of the large-scale structure of the universe. All the
halo finding codes tested could successfully recover the spatial location of
our mock haloes. They further returned lists of particles (potentially)
belonging to the object that led to coinciding values for the maximum of the
circular velocity profile and the radius where it is reached. All the finders
based in configuration space struggled to recover substructure that was located
close to the centre of the host halo and the radial dependence of the mass
recovered varies from finder to finder. Those finders based in phase space
could resolve central substructure although they found difficulties in
accurately recovering its properties. Via a resolution study we found that most
of the finders could not reliably recover substructure containing fewer than
30-40 particles. However, also here the phase space finders excelled by
resolving substructure down to 10-20 particles. By comparing the halo finders
using a high resolution cosmological volume we found that they agree remarkably
well on fundamental properties of astrophysical significance (e.g. mass,
position, velocity, and peak of the rotation curve).Comment: 27 interesting pages, 20 beautiful figures, and 4 informative tables
accepted for publication in MNRAS. The high-resolution version of the paper
as well as all the test cases and analysis can be found at the web site
http://popia.ft.uam.es/HaloesGoingMA
Haloes gone MAD: The Halo-Finder Comparison Project
We present a detailed comparison of fundamental dark matter halo properties retrieved by a substantial number of different halo finders. These codes span a wide range of techniques including friends-of-friends, spherical-overdensity and phase-space-based algorithms. We further introduce a robust (and publicly available) suite of test scenarios that allow halo finder developers to compare the performance of their codes against those presented here. This set includes mock haloes containing various levels and distributions of substructure at a range of resolutions as well as a cosmological simulation of the large-scale structure of the universe. All the halo-finding codes tested could successfully recover the spatial location of our mock haloes. They further returned lists of particles (potentially) belonging to the object that led to coinciding values for the maximum of the circular velocity profile and the radius where it is reached. All the finders based in configuration space struggled to recover substructure that was located close to the centre of the host halo, and the radial dependence of the mass recovered varies from finder to finder. Those finders based in phase space could resolve central substructure although they found difficulties in accurately recovering its properties. Through a resolution study we found that most of the finders could not reliably recover substructure containing fewer than 30-40 particles. However, also here the phase-space finders excelled by resolving substructure down to 10-20 particles. By comparing the halo finders using a high-resolution cosmological volume, we found that they agree remarkably well on fundamental properties of astrophysical significance (e.g. mass, position, velocity and peak of the rotation curve). We further suggest to utilize the peak of the rotation curve, vmax, as a proxy for mass, given the arbitrariness in defining a proper halo edg
Efficacy of Conventional and Organic Insecticides against Scaphoideus titanus: Field and Semi-Field Trials
Scaphoideus titanus is the main vector of phytoplasmas associated with Flavescence dorée (FD), one of the most serious threats to viticulture in many European countries. To minimize the spread of this disease, mandatory control measures against S. titanus were decided in Europe. In the 1990s, the repeated application of insecticides (mainly organophosphates) proved to be an effective measure to control the vector and the related disease in north-eastern Italy. These insecticides and most of the neonicotinoids were recently banned from European viticulture. Serious FD issues detected in the recent years in northern Italy could be related to the use of less effective insecticides. Trials aimed at evaluating the efficacy of the most used conventional and organic insecticides in the control of S. titanus have been performed in semi-field and field conditions to test this hypothesis. In efficacy trials, carried out in four vineyards, etofenprox and deltamethrin proved to be the best conventional insecticides, while pyrethrins were the most impactful among organic insecticides. Insecticide residual activity was evaluated in semi-field and field conditions. Acrinathrin showed the most significant residual effects in both conditions. In semi-field trials, most of the pyrethroids were associated with good results in terms of residual activity. However, these effects declined in field conditions, probably due to high temperatures. Organic insecticides showed poor results in terms of residual efficacy. Implications of these results in the context of Integrated Pest Management in conventional and organic viticulture are discussed
Galaxy And Mass Assembly (GAMA): Gas Fuelling of Spiral Galaxies in the Local Universe II. – Direct Measurement of the Dependencies on Redshift and Host Halo Mass of Stellar Mass Growth in Central Disk Galaxies
We present a detailed analysis of the specific star formation rate – stellar mass (sSFR − M*) of z ≤ 0.13 disk central galaxies using a morphologically selected mass-complete sample (M* ≥ 109.5M⊙). Considering samples of grouped and ungrouped galaxies, we find the sSFR − M* relations of disk-dominated central galaxies to have no detectable dependence on host dark-matter halo (DMH) mass, even where weak-lensing measurements indicate a difference in halo mass of a factor ≳ 5. We further detect a gradual evolution of the sSFR − M* relation of non-grouped (field) central disk galaxies with redshift, even over a Δz ≈ 0.04 (≈5 · 108yr) interval, while the scatter remains constant. This evolution is consistent with extrapolation of the ”main-sequence-of-star-forming-galaxies” from previous literature that uses larger redshift baselines and coarser sampling. Taken together, our results present new constraints on the paradigm under which the SFR of galaxies is determined by a self-regulated balance between gas inflows and outflows, and consumption of gas by star-formation in disks, with the inflow being determined by the product of the cosmological accretion rate and a fuelling-efficiency –
M ˙ b,halo ζ
M˙b,haloζ
. In particular, maintaining the paradigm requires
M ˙ b,halo ζ
M˙b,haloζ
to be independent of the mass Mhalo of the host DMH. Furthermore, it requires the fuelling-efficiency ζ to have a strong redshift dependence (∝(1 + z)2.7 for M* = 1010.3M⊙ over z = 0 − 0.13), even though no morphological transformation to spheroids can be invoked to explain this in our disk-dominated sample. The physical mechanisms capable of giving rise to such dependencies of ζ on Mhalo and z for disks are unclea
- …
