182 research outputs found

    A failed invasion? Commercially introduced pollinators in Southern France

    Get PDF
    The natural diversity of Bombus terrestris subspecies could be under threat from the commercialisation of bumblebees. Therefore, to determine whether commercially imported bumblebees are able to establish and spread, we carried out long-term observations of bumblebees in southern France. Our surveys occurred before, during, and after the importation (between 1989 and 1996) of thousands of colonies of the Sardinian subspecies B. t. sassaricus. Queens and males of B. t. sassaricus were observed foraging outside commercial greenhouses in 1991, 1993, and 1994 and feral workers were observed foraging on native vegetation nearly two years after the importation of B. t. sassaricus ceased. However, no B. t. sassaricus, or F1 hybrids were observed after 1998. We conclude that B. t. sassaricus remains inconspicuous in France and competition from the three native subspecies may have prevented it from becoming invasive. However, genetic interference through introgression cannot be ruled out

    Developing European conservation and mitigation tools for pollination services: approaches of the STEP (Status and Trends of European Pollinators) project

    Get PDF
    Pollinating insects form a key component of European biodiversity, and provide a vital ecosystem service to crops and wild plants. There is growing evidence of declines in both wild and domesticated pollinators, and parallel declines in plants relying upon them. The STEP project (Status and Trends of European Pollinators, 2010-2015, www.stepproject.net) is documenting critical elements in the nature and extent of these declines, examining key functional traits associated with pollination deficits, and developing a Red List for some European pollinator groups. Together these activities are laying the groundwork for future pollinator monitoring programmes. STEP is also assessing the relative importance of potential drivers of pollinator declines, including climate change, habitat loss and fragmentation, agrochemicals, pathogens, alien species, light pollution, and their interactions. We are measuring the ecological and economic impacts of declining pollinator services and floral resources, including effects on wild plant populations, crop production and human nutrition. STEP is reviewing existing and potential mitigation options, and providing novel tests of their effectiveness across Europe. Our work is building upon existing and newly developed datasets and models, complemented by spatially-replicated campaigns of field research to fill gaps in current knowledge. Findings are being integrated into a policy-relevant framework to create evidence-based decision support tools. STEP is establishing communication links to a wide range of stakeholders across Europe and beyond, including policy makers, beekeepers, farmers, academics and the general public. Taken together, the STEP research programme aims to improve our understanding of the nature, causes, consequences and potential mitigation of declines in pollination services at local, national, continental and global scales

    Genes Suggest Ancestral Colour Polymorphisms Are Shared across Morphologically Cryptic Species in Arctic Bumblebees

    Get PDF
    email Suzanne orcd idCopyright: © 2015 Williams et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Première estimation de la dérive faunique chez les Bourdons de la Belgique (Hymenoptera, Apidae)

    Get PDF
    peer reviewe

    Stressful conditions reveal decrease in size, modification of shape but relatively stable asymmetry in bumblebee wings

    Get PDF
    Human activities can generate a wide variety of direct and indirect effects on animals, which can manifest as environmental and genetic stressors. Several phenotypic markers have been proposed as indicators of these stressful conditions but have displayed contrasting results, depending, among others, on the phenotypic trait measured. Knowing the worldwide decline of multiple bumblebee species, it is important to understand these stressors and link them with the drivers of decline. We assessed the impact of several stressors (i.e. natural toxin-, parasite-, thermic- and inbreeding-stress) on both wing shape and size and their variability as well as their directional and fluctuating asymmetries. The total data set includes 650 individuals of Bombus terrestris (Hymenoptera: Apidae). Overall wing size and shape were affected by all the tested stressors. Except for the sinigrin (e.g. glucosinolate) stress, each stress implies a decrease of wing size. Size variance was affected by several stressors, contrary to shape variance that was affected by none of them. Although wing size directional and fluctuating asymmetries were significantly affected by sinigrin, parasites and high temperatures, neither directional nor fluctuating shape asymmetry was significantly affected by any tested stressor. Parasites and high temperatures led to the strongest phenotype modifications. Overall size and shape were the most sensitive morphological traits, which contrasts with the common view that fluctuating asymmetry is the major phenotypic marker of stress

    Plant-Insect Interactions in a Changing World

    Get PDF
    Global change is resetting the spatial and ecological equilibrium of complex coevolutionary relationships between plants and their insect herbivores. We review the mechanisms at play in the responses of planteinsect interactions to global changes, including increased temperature and atmospheric CO2 concentrations, modification of land use and pollution. We distinguish between the direct effects of global changes on each partner from the indirect impacts on insects via the responses of plants. The indirect effects include a change in the nutritional quality of the plant tissues for herbivore insects, as well as a change in the microclimatic conditions at the leaf surface. Pollinators are involved in a close symbiotic relationship with their favourite plants, and any depression caused by climate stress can lead to pollination deficit. Pollinators are, indeed, quite sensitive to global changes. Furthermore, although species are connected by trophic links, all species respond differently to global changes. We highlight that more research is needed to elucidate the plant-mediated indirect effects of climate change on insects. Then, other human activities, such as land transformations and release of pollutants, are likely to modulate these links between climate and plante insect relationships. We argue that predicting the net effect of global change on planteinsect relationships requires a comprehensive understanding of the mechanisms that modulate the interaction strength between the plants and the insects, rather than on focusing on each partner individually. 1
    corecore