378 research outputs found
Acute stress selectively impairs learning to act
Stress interferes with instrumental learning. However, choice is also influenced by non-instrumental factors, most strikingly by biases arising from Pavlovian associations that facilitate action in pursuit of rewards and inaction in the face of punishment. Whether stress impacts on instrumental learning via these Pavlovian associations is unknown. Here, in a task where valence (reward or punishment) and action (go or no-go) were orthogonalised, we asked whether the impact of stress on learning was action or valence specific. We exposed 60 human participants either to stress (socially-evaluated cold pressor test) or a control condition (room temperature water). We contrasted two hypotheses: that stress would lead to a non-selective increase in the expression of Pavlovian biases; or that stress, as an aversive state, might specifically impact action production due to the Pavlovian linkage between inaction and aversive states. We found support for the second of these hypotheses. Stress specifically impaired learning to produce an action, irrespective of the valence of the outcome, an effect consistent with a Pavlovian linkage between punishment and inaction. This deficit in action-learning was also reflected in pupillary responses; stressed individuals showed attenuated pupillary responses to action, hinting at a noradrenergic contribution to impaired action-learning under stress
Extended phase space thermodynamics for charged and rotating black holes and Born-Infeld vacuum polarization
We investigate the critical behaviour of charged and rotating AdS black holes
in d spacetime dimensions, including effects from non-linear electrodynamics
via the Born-Infeld action, in an extended phase space in which the
cosmological constant is interpreted as thermodynamic pressure. For
Reissner-Nordstrom black holes we find that the analogy with the Van der Walls
liquid-gas system holds in any dimension greater than three, and that the
critical exponents coincide with those of the Van der Waals system. We find
that neutral slowly rotating black holes in four space-time dimensions also
have the same qualitative behaviour. However charged and rotating black holes
in three spacetime dimensions do not exhibit critical phenomena. For
Born-Infeld black holes we define a new thermodynamic quantity B conjugate to
the Born-Infeld parameter b that we call Born-Infeld vacuum polarization. We
demonstrate that this quantity is required for consistency of both the first
law of thermodynamics and the corresponding Smarr relation.Comment: 23 pages, 32 figures, v2: minor changes, upgraded reference
A holographic model for the fractional quantum Hall effect
Experimental data for fractional quantum Hall systems can to a large extent
be explained by assuming the existence of a modular symmetry group commuting
with the renormalization group flow and hence mapping different phases of
two-dimensional electron gases into each other. Based on this insight, we
construct a phenomenological holographic model which captures many features of
the fractional quantum Hall effect. Using an SL(2,Z)-invariant
Einstein-Maxwell-axio-dilaton theory capturing the important modular
transformation properties of quantum Hall physics, we find dyonic diatonic
black hole solutions which are gapped and have a Hall conductivity equal to the
filling fraction, as expected for quantum Hall states. We also provide several
technical results on the general behavior of the gauge field fluctuations
around these dyonic dilatonic black hole solutions: We specify a sufficient
criterion for IR normalizability of the fluctuations, demonstrate the
preservation of the gap under the SL(2,Z) action, and prove that the
singularity of the fluctuation problem in the presence of a magnetic field is
an accessory singularity. We finish with a preliminary investigation of the
possible IR scaling solutions of our model and some speculations on how they
could be important for the observed universality of quantum Hall transitions.Comment: 86 pages, 16 figures; v.2 references added, typos fixed, improved
discussion of ref. [39]; v.3 more references added and typos fixed, several
statements clarified, v.4 version accepted for publication in JHE
Perimovement decrease of alpha/beta oscillations in the human nucleus accumbens
The human nucleus accumbens is thought to play an important role in guiding future action selection via an evaluation of current action outcomes. Here we provide electrophysiological evidence for a more direct, i.e., online, role during action preparation. We recorded local field potentials from the nucleus accumbens in patients with epilepsy undergoing surgery for deep brain stimulation. We found a consistent decrease in the power of alpha/beta oscillations (10–30 Hz) before and around the time of movements. This perimovement alpha/beta desynchronization was observed in seven of eight patients and was present both before instructed movements in a serial reaction time task as well as before self-paced, deliberate choices in a decision making task. A similar beta decrease over sensorimotor cortex and in the subthalamic nucleus has been directly related to movement preparation and execution. Our results support the idea of a direct role of the human nucleus accumbens in action preparation and execution
A neurocomputational model for intrinsic reward
Standard economic indicators provide an incomplete picture of what we value both as individuals and as a society. Furthermore, canonical macroeconomic measures, such as GDP, do not account for non-market activities (e.g., cooking, childcare) that nevertheless impact well-being. Here, we introduce a computational tool that measures the affective value of experiences (e.g., playing a musical instrument without errors). We go on to validate this tool with neural data, using fMRI to measure neural activity in male and female human subjects performing a reinforcement learning task that incorporated periodic ratings of subjective affective state. Learning performance determined level of payment (i.e., extrinsic reward). Crucially, the task also incorporated a skilled performance component (i.e., intrinsic reward) which did not influence payment. Both extrinsic and intrinsic rewards influenced affective dynamics, and their relative influence could be captured in our computational model. Individuals for whom intrinsic rewards had a greater influence on affective state than extrinsic rewards had greater ventromedial prefrontal cortex (vmPFC) activity for intrinsic than extrinsic rewards. Thus, we show that computational modelling of affective dynamics can index the subjective value of intrinsic relative to extrinsic rewards, a 'computational hedonometer' that reflects both behavior and neural activity that quantifies the affective value of experience.SIGNIFICANCE STATEMENTTraditional economic indicators are increasingly recognized to provide an incomplete picture of what we value as a society. Standard economic approaches struggle to accurately assign values to non-market activities that nevertheless may be intrinsically rewarding, prompting a need for new tools to measure what really matters to individuals. Using a combination of neuroimaging and computational modeling, we show that despite their lack of instrumental value, intrinsic rewards influence subjective affective state and ventromedial prefrontal cortex activity. The relative degree to which extrinsic and intrinsic rewards influence affective state is predictive of their relative impacts on neural activity, confirming the utility of our approach for measuring the affective value of experiences and other non-market activities in individuals
Risk taking for potential losses but not gains increases with time of day
Humans exhibit distinct risk preferences when facing choices involving potential gains and losses. These preferences are believed to be subject to neuromodulatory influence, particularly from dopamine and serotonin. As neuromodulators manifest circadian rhythms, this suggests decision making under risk might be affected by time of day. Here, in a large subject sample collected using a smartphone application, we found that risky options with potential losses were increasingly chosen over the course of the day. We observed this result in both a within-subjects design (N = 2599) comparing risky options chosen earlier and later in the day in the same individuals, and in a between-subjects design (N = 26,720) showing our effect generalizes across ages and genders. Using computational modelling, we show this diurnal change in risk preference reflects a decrease in sensitivity to increasing losses, but no change was observed in the relative impacts of gains and losses on choice (i.e., loss aversion). Thus, our findings reveal a striking diurnal modulation in human decision making, a pattern with potential importance for real-life decisions that include voting, medical decisions, and financial investments
Approach-induced biases in human information sampling
Information sampling is often biased towards seeking evidence that confirms one’s prior beliefs. Despite such biases being a pervasive feature of human behavior, their underlying causes remain unclear. Many accounts of these biases appeal to limitations of human hypothesis testing and cognition, de facto evoking notions of bounded rationality, but neglect more basic aspects of behavioral control. Here we demonstrate involvement of Pavlovian approach biases in determining which information humans will choose to sample. We collected a large novel dataset from 32,445 human subjects, making over 3 million decisions, who played a gambling task designed to measure the latent causes and extent of information-sampling biases. We identified three novel approach-related biases, formalized by comparing subject behavior to a dynamic programming model of optimal information gathering. These biases reflected the amount of information sampled (‘positive evidence approach’), the selection of which information to sample (‘sampling the favorite’), and the interaction between information sampling and subsequent choices (‘rejecting unsampled options’). The prevalence of all three biases was related to a Pavlovian approach-avoid parameter quantified within an entirely independent economic decision task. Our large dataset also revealed that individual differences in information seeking are a stable trait across multiple gameplays, and can be related to demographic measures including age and educational attainment. As well as revealing limitations in cognitive processing, our findings suggest information sampling biases reflect the expression of primitive, yet potentially ecologically adaptive, behavioral repertoires. One such behavior is sampling from options that will eventually be chosen, even when other sources of information are more pertinent for guiding future action
Approach-induced biases in human information sampling
Information sampling is often biased towards seeking evidence that confirms one’s prior beliefs. Despite such biases being a pervasive feature of human behavior, their underlying causes remain unclear. Many accounts of these biases appeal to limitations of human hypothesis testing and cognition, de facto evoking notions of bounded rationality, but neglect more basic aspects of behavioral control. Here we demonstrate involvement of Pavlovian approach biases in determining which information humans will choose to sample. We collected a large novel dataset from 32,445 human subjects, making over 3 million decisions, who played a gambling task designed to measure the latent causes and extent of information-sampling biases. We identified three novel approach-related biases, formalized by comparing subject behavior to a dynamic programming model of optimal information gathering. These biases reflected the amount of information sampled (‘positive evidence approach’), the selection of which information to sample (‘sampling the favorite’), and the interaction between information sampling and subsequent choices (‘rejecting unsampled options’). The prevalence of all three biases was related to a Pavlovian approach-avoid parameter quantified within an entirely independent economic decision task. Our large dataset also revealed that individual differences in information seeking are a stable trait across multiple gameplays, and can be related to demographic measures including age and educational attainment. As well as revealing limitations in cognitive processing, our findings suggest information sampling biases reflect the expression of primitive, yet potentially ecologically adaptive, behavioral repertoires. One such behavior is sampling from options that will eventually be chosen, even when other sources of information are more pertinent for guiding future action
Recommended from our members
Dopamine Increases a Value-Independent Gambling Propensity
Although the impact of dopamine on reward learning is well documented, its influence on other aspects of behavior remains the subject of much ongoing work. Dopaminergic drugs are known to increase risk-taking behavior, but the underlying mechanisms for this effect are not clear. We probed dopamine’s role by examining the effect of its precursor L-DOPA on the choices of healthy human participants in an experimental paradigm that allowed particular components of risk to be distinguished. We show that choice behavior depended on a baseline (ie, value-independent) gambling propensity, a gambling preference scaling with the amount/variance, and a value normalization factor. Boosting dopamine levels specifically increased just the value-independent baseline gambling propensity, leaving the other components unaffected. Our results indicate that the influence of dopamine on choice behavior involves a specific modulation of the attractiveness of risky options—a finding with implications for understanding a range of reward-related psychopathologies including addiction
Interpersonal and affective dimensions of psychopathic traits in adolescents : development and validation of a self-report instrument
We report the development and psychometric evaluations of a self-report instrument designed to screen for psychopathic traits among mainstream community adolescents. Tests of item functioning were initially conducted with 26 adolescents. In a second study the new instrument was administered to 150 high school adolescents, 73 of who had school records of suspension for antisocial behavior. Exploratory factor analysis yielded a 4-factor structure (Impulsivity α = .73, Self-Centredness α = .70, Callous-Unemotional α = .69, and Manipulativeness α = .83). In a third study involving 328 high school adolescents, 130 with records of suspension for antisocial behaviour, competing measurement models were evaluated using confirmatory factor analysis. The superiority of a first-order model represented by four correlated factors that was invariant across gender and age was confirmed. The findings provide researchers and clinicians with a psychometrically strong, self-report instrument and a greater understanding of psychopathic traits in mainstream adolescents
- …
