7,783 research outputs found
Electrically-controllable RKKY interaction in semiconductor quantum wires
We demonstrate in theory that it is possible to all-electrically manipulate
the RKKY interaction in a quasi-one-dimensional electron gas embedded in a
semiconductor heterostructure, in the presence of Rashba and Dresselhaus
spin-orbit interaction. In an undoped semiconductor quantum wire where
intermediate excitations are gapped, the interaction becomes the short-ranged
Bloembergen-Rowland super-exchange interaction. Owing to the interplay of
different types of spin-orbit interaction, the interaction can be controlled to
realize various spin models, e.g., isotropic and anisotropic Heisenberg-like
models, Ising-like models with additional Dzyaloshinsky-Moriya terms, by tuning
the external electric field and designing the crystallographic directions. Such
controllable interaction forms a basis for quantum computing with localized
spins and quantum matters in spin lattices.Comment: 5 pages, 1 figur
The FENE dumbbell polymer model: existence and uniqueness of solutions for the momentum balance equation
We consider the FENE dumbbell polymer model which is the coupling of the
incompressible Navier-Stokes equations with the corresponding
Fokker-Planck-Smoluchowski di ffusion equation. We show global well-posedness
in the case of a 2D bounded domain. We assume in the general case that the
initial velocity is sufficiently small and the initial probability density is
sufficiently close to the equilibrium solution; moreover an additional
condition on the coeffcients is imposed. In the corotational case, we only
assume that the initial probability density is sufficiently close to the
equilibrium solution
Redistribution of multi-phase particulate organic carbon in a marine shelf and canyon system during an exceptional river flood: Effects of Typhoon Morakot on the Gaoping River-Canyon system
This is the final published version of the article. It was originally published in Marine Geology (Sparkes RB, Lin I-T, Hovius N, Galy A, Liu JT, Xu X, Yang R, Marine Geology 2015, 363, 191–201, doi:10.1016/j.margeo.2015.02.013) http://dx.doi.org/10.1016/j.margeo.2015.02.013Volumetrically, turbidity currents are the prime suppliers of sediment to the deep sea, and conveyors of organic carbon from the terrestrial biosphere and submarine shelf into marine depositional basins. They result from complex processes of erosion, transport and deposition that can be difficult to study in detail. Here we present data from the Gaoping submarine canyon system, off SW Taiwan, which was perturbed in 2009 by the addition of flood deposits following Typhoon Morakot and sampled by gravity coring less than 2 months after the event. We use the different origins of organic carbon, distinguished by their carbon and nitrogen concentrations and δ13C and δ15N isotopic composition, to compare and contrast standard and extreme sedimentological conditions.
Using well-constrained end-members, the results were de-convolved into inputs of metamorphic and sedimentary fossil organic carbon eroded within the Gaoping River basin, terrestrial non-fossil carbon and marine organic matter. In the upper Gaoping Canyon, sedimentation is dominated by the highly-localised hyperpycnal input of river washload and submarine sediment slumps, each associated with extensive flooding following Typhoon Morakot, whilst the shelf experienced deposition and reworking of hemi-pelagic marine sediments. A terrestrial signal is also found in the core-top of a fine-grained shelf sample over 20 km from the Gaoping Canyon, in a region normally dominated by marine carbon deposition, showing that Morakot was an unusually large flood event. Conversely, sediment from just above the canyon thalweg contains 0.23 wt.% depth-averaged marine organic carbon (37% of the TOC content) implying that terrestrial OC-dominated turbidites are tightly constrained within the canyon. Hyperpycnal processes can lead to the rapid and efficient transport of both terrestrial and submarine sediments to more permanent burial locations.RS was supported by an Engineering and Physical Sciences Research Council (EP/P502365/1 and EP/P504120/1) studentship. JTL was supported by grant number NSC95-2745-M-110-001 for the Fate of Terrestrial–Nonterrestrial Sediments in High Yield Particle–Export River–Sea Systems Program, which provided the cores in this study. We thank Peter Talling for his insightful and constructive comments on the manuscript and a further, anonymous reviewer for generous endorsement
Recommended from our members
Measurement of post-lens tear thickness.
PURPOSE: A method to measure the tear film beneath a soft contact lens, referred to as post-lens tear thickness (PLTT), would have many applications to contact lens research. In this study a noninvasive technique for measuring the PLTT is presented. METHODS: The feasibility of measuring the tear layer by optical pachometry was first assessed using a model eye. The baseline corneal thickness (B) of both eyes of 21 subjects was measured, etafilcon-A ionic disposable soft contact lenses (58% water) were inserted, and the total thickness (T) of the cornea, contact lens, and PLTT were measured. After the pachometry readings the lenses were removed and their center thickness (C) determined. The PLTT was calculated using the equation: PLTT = T-(B+C). Two sets of measurements of T were performed at 15 and 25 minutes after lens insertion. The entire procedure was repeated at a second visit. RESULTS: The pachometry measurements of the small aqueous reservoir between the model eye and the lens closely matched those obtained by direct microscopic measurement. For human PLTT, the mean values (and 95% confidence intervals) for right eyes on visits 1 and 2 were 11 (8, 13) and 12 (10, 15) microm, respectively, and for left eyes were 12 (10, 15) and 11 microm (8, 14) microm, respectively. CONCLUSIONS: It is possible to measure the post-lens tear thickness using optical pachometry. The variability between repeated measurements suggests that with careful sample size planning, the technique is sufficiently precise to be useful in group assessments of PLTT
Genomic Expansion of Magnetotactic Bacteria Reveals an Early Common Origin of Magnetotaxis with Lineage-specific Evolution
The origin and evolution of magnetoreception, which in diverse prokaryotes and protozoa is known as magnetotaxis and enables these microorganisms to detect Earth’s magnetic field for orientation and navigation, is not well understood in evolutionary biology. The only known prokaryotes capable of sensing the geomagnetic field are magnetotactic bacteria (MTB), motile microorganisms that biomineralize intracellular, membrane-bounded magnetic single-domain crystals of either magnetite (Fe3O4) or greigite (Fe3S4) called magnetosomes. Magnetosomes are responsible for magnetotaxis in MTB. Here we report the first large-scale metagenomic survey of MTB from both northern and southern hemispheres combined with 28 genomes from uncultivated MTB. These genomes expand greatly the coverage of MTB in the Proteobacteria, Nitrospirae, and Omnitrophica phyla, and provide the first genomic evidence of MTB belonging to the Zetaproteobacteria and “Candidatus Lambdaproteobacteria” classes. The gene content and organization of magnetosome gene clusters, which are physically grouped genes that encode proteins for magnetosome biosynthesis and organization, are more conserved within phylogenetically similar groups than between different taxonomic lineages. Moreover, the phylogenies of core magnetosome proteins form monophyletic clades. Together, these results suggest a common ancient origin of iron-based (Fe3O4 and Fe3S4) magnetotaxis in the domain Bacteria that underwent lineage-specific evolution, shedding new light on the origin and evolution of biomineralization and magnetotaxis, and expanding significantly the phylogenomic representation of MTB
A Computational Study of the Weak Galerkin Method for Second-Order Elliptic Equations
The weak Galerkin finite element method is a novel numerical method that was
first proposed and analyzed by Wang and Ye for general second order elliptic
problems on triangular meshes. The goal of this paper is to conduct a
computational investigation for the weak Galerkin method for various model
problems with more general finite element partitions. The numerical results
confirm the theory established by Wang and Ye. The results also indicate that
the weak Galerkin method is efficient, robust, and reliable in scientific
computing.Comment: 19 page
E-QED: Electrical Bug Localization During Post-Silicon Validation Enabled by Quick Error Detection and Formal Methods
During post-silicon validation, manufactured integrated circuits are
extensively tested in actual system environments to detect design bugs. Bug
localization involves identification of a bug trace (a sequence of inputs that
activates and detects the bug) and a hardware design block where the bug is
located. Existing bug localization practices during post-silicon validation are
mostly manual and ad hoc, and, hence, extremely expensive and time consuming.
This is particularly true for subtle electrical bugs caused by unexpected
interactions between a design and its electrical state. We present E-QED, a new
approach that automatically localizes electrical bugs during post-silicon
validation. Our results on the OpenSPARC T2, an open-source
500-million-transistor multicore chip design, demonstrate the effectiveness and
practicality of E-QED: starting with a failed post-silicon test, in a few hours
(9 hours on average) we can automatically narrow the location of the bug to
(the fan-in logic cone of) a handful of candidate flip-flops (18 flip-flops on
average for a design with ~ 1 Million flip-flops) and also obtain the
corresponding bug trace. The area impact of E-QED is ~2.5%. In contrast,
deter-mining this same information might take weeks (or even months) of mostly
manual work using traditional approaches
From Rotating Atomic Rings to Quantum Hall States
Considerable efforts are currently devoted to the preparation of ultracold
neutral atoms in the emblematic strongly correlated quantum Hall regime. The
routes followed so far essentially rely on thermodynamics, i.e. imposing the
proper Hamiltonian and cooling the system towards its ground state. In rapidly
rotating 2D harmonic traps the role of the transverse magnetic field is played
by the angular velocity. For particle numbers significantly larger than unity,
the required angular momentum is very large and it can be obtained only for
spinning frequencies extremely near to the deconfinement limit; consequently,
the required control on experimental parameters turns out to be far too
stringent. Here we propose to follow instead a dynamic path starting from the
gas confined in a rotating ring. The large moment of inertia of the fluid
facilitates the access to states with a large angular momentum, corresponding
to a giant vortex. The initial ring-shaped trapping potential is then
adiabatically transformed into a harmonic confinement, which brings the
interacting atomic gas in the desired quantum Hall regime. We provide clear
numerical evidence that for a relatively broad range of initial angular
frequencies, the giant vortex state is adiabatically connected to the bosonic
Laughlin state, and we discuss the scaling to many particles.Comment: 9 pages, 5 figure
Recommended from our members
Optimizing OCT acquisition parameters for assessments of vitreous haze for application in uveitis
Detection and evaluation of inflammatory activity in uveitis is essential to the management of the condition, and yet continues to be largely dependent on subjective clinical measures. Optical coherence tomography (OCT) measurement of vitreous activity is an alternative to clinical vitreous haze scoring and has passed a number of early validation studies. In this study we aimed to evaluate the impact of ‘operator factors’ on the variability of the technique as part of the validation process, and to help evaluate its suitability for ‘real world’ use. Vitreous haze index was calculated as a ratio between the reflectivity of the vitreous and of the outer retina in each scan. Different scanning conditions were tested and their effect on the measurement is reported. Our results show that the ‘quantitative imaging’ technique of OCT-measured vitreous activity had good reliability in normal subjects under a range of ‘real world’ conditions, such as when the operator changes the averaging value. The technique was however vulnerable to highly inaccurate focussing or abnormal downward displacement of the image. OCT-based quantification of vitreous activity is a promising alternative to current subjective clinical estimates, with sufficient ‘tolerance’ to be used in routine clinical practice as well as clinical trials
How to Identify Exposed Women Who Are Infected with Neisseria gonorrhoeae.
Treatment trials of antibiotics for Neisseria gonorrhoeae infections frequently enroll primarily men with urethritis, as the diagnosis of acute gonococcal infection in men with urethritis is easily made by Gram stain of the urethral exudate, followed by confirmatory culture or nucleic acid amplification tests (NAATs). Enrolling women in treatment trials is of great importance, but N. gonorrhoeae cervical infections cause nonspecific symptoms. This makes it difficult to conduct interventional trials, as large numbers of women with nonspecific symptoms need to be screened for infection. Gram stain of cervical secretions has a strikingly low sensitivity, and culture and/or NAAT results are not available at the time of screening. This necessitates recall and delayed treatment of infected women who may not return and who may spread the infection during the interval. In this chapter we present an algorithm, derived from a comparison of women who did, or did not, become infected during exposure, which identifies those women who are highly likely to be infected before culture and/or NAAT results are available. The algorithm provides an efficient way to conduct interventional trials in women without the problem of recall and delayed treatment
- …
