710 research outputs found

    Measurement Placement in Distribution System State Estimation

    Get PDF
    Published versio

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur

    A study of the Z production cross-section in pp collisions at √s = 7 using tau final states

    Get PDF
    A measurement of the inclusive Z → ττ cross-section in pp collisions at √s =7 is presented based on a dataset of 1.0 fb[superscript −1] collected by the LHCb detector. Candidates for Z → τ τ decays are identified through reconstructed final states with two muons, a muon and an electron, a muon and a hadron, or an electron and a hadron. The production cross-section for Z bosons, with invariant mass between 60 and 120 GeV/c[superscript 2], which decay to τ leptons with transverse momenta greater than 20 GeV/c and pseudorapidities between 2.0 and 4.5, is measured to be σ[subscript pp]→Z→ττ = 71.4 ± 3.5 ± 2.8 ± 2.5 pb; the first uncertainty is statistical, the second is systematic, and the third is due to the uncertainty on the integrated luminosity. The ratio of the cross-sections for Z → τ τ to Z → μμ is determined to be 0.93 ± 0.09, where the uncertainty is the combination of statistical, systematic, and luminosity uncertainties of the two measurements.National Science Foundation (U.S.

    Precision measurement of the B0s-B¯0s oscillation frequency with the decay B0s → D−sπ+

    Get PDF
    A key ingredient to searches for physics beyond the Standard Model in B0s mixing phenomena is the measurement of the B0s– Bs0{{\overline{ {\mathrm {B}}}{}}^0_{\mathrm { s}}} oscillation frequency, which is equivalent to the mass difference Δms of the B0s mass eigenstates. Using the world's largest B0s meson sample accumulated in a dataset, corresponding to an integrated luminosity of 1.0 fb−1, collected by the LHCb experiment at the CERN LHC in 2011, a measurement of Δms is presented. A total of about 34 000 B0s → D−sπ+ signal decays are reconstructed, with an average decay time resolution of 44 fs. The oscillation frequency is measured to be Δms = 17.768 ± 0.023 (stat) ± 0.006 (syst) ps−1, which is the most precise measurement to date

    A Chromosomally Encoded Virulence Factor Protects the Lyme Disease Pathogen against Host-Adaptive Immunity

    Get PDF
    Borrelia burgdorferi, the bacterial pathogen of Lyme borreliosis, differentially expresses select genes in vivo, likely contributing to microbial persistence and disease. Expression analysis of spirochete genes encoding potential membrane proteins showed that surface-located membrane protein 1 (lmp1) transcripts were expressed at high levels in the infected murine heart, especially during early stages of infection. Mice and humans with diagnosed Lyme borreliosis also developed antibodies against Lmp1. Deletion of lmp1 severely impaired the pathogen's ability to persist in diverse murine tissues including the heart, and to induce disease, which was restored upon chromosomal complementation of the mutant with the lmp1 gene. Lmp1 performs an immune-related rather than a metabolic function, as its deletion did not affect microbial persistence in immunodeficient mice, but significantly decreased spirochete resistance to the borreliacidal effects of anti-B. burgdorferi sera in a complement-independent manner. These data demonstrate the existence of a virulence factor that helps the pathogen evade host-acquired immune defense and establish persistent infection in mammals

    Risk Factors for Nonsynchronous Second Primary Malignancy and Related Death in Patients with Differentiated Thyroid Carcinoma

    Get PDF
    BACKGROUND: Differentiated thyroid cancer (DTC) survivors are at increased risk of developing nonsynchronous second primary malignancy (NSPM). This study aims to examine possible risk factors leading to occurrence of NSPM as well as risk factors leading to NSPM-related death in patients with DTC. METHODS: Of the 1,106 patients with DTC managed at our institution, 92 (8.3%) patients developed NSPM and 40 (3.6%) patients died of NSPM. All causes of death were confirmed by medical record, autopsy report or death certificate. Clinicopathological variables were compared between those without NSPM and with NSPM as well as between those who died of NSPM and did not die of NSPM. Significant variables on univariate analysis were entered into a Cox proportional hazards model. RESULTS: The median latency period from diagnosis of DTC to NSPM was 142.7 (range 16.8-511.0) months. For occurrence of NSPM, age at DTC diagnosis >/=50 years old [relative risk (RR) = 2.35], cumulative radioactive iodine (RAI) activity 3.0-8.9 GBq (RR = 2.38), and external local radiotherapy (ERT) (RR = 1.95) were significant risk factors. For NSPM-related death, age at DTC diagnosis >/=50 years old (RR = 3.32) and nonbreast cancer (RR = 5.76) were significant risk factors. CONCLUSIONS: NSPM accounted for 18.7% of all deaths in DTC, but mortality was high (43.5%). Age at DTC diagnosis >/=50 years old, cumulative RAI activity 3.0-8.9 GBq, and ERT were significant risk factors for occurrence of NSPM, whereas age at DTC diagnosis >/=50 years old and the diagnosis of nonbreast cancer were significant risk factors for NSPM-related death.published_or_final_versionSpringer Open Choice, 21 Feb 201

    Numerical investigation of nanostructured silica PCFs for sensing applications.

    Get PDF
    Photonic crystal fibers (PCFs) developed using nanostructured composite materials provide special optical properties. PCF light propagation and modal characteristics can be tailored by modifying their structural and material parameters. Structuring and infusion of liquid crystal materials enhances the capabilities of all silica PCFs, facilitating their operation in different spectral regimes. The wavelength tunability feature of nanostructured PCFs can be utilized for many advanced sensing applications. This paper discusses a new approach to modify the optical properties of PCFs by periodic nanostructuring and composite material (liquid crystal-silica) infiltration. PCF characteristics like confinement wavelength, confinement loss, mode field diameter (MFD) and bandwidth are investigated by varying the structural parameters and material infiltrations. Theoretical study revealed that composite material infusion resulted in a spectral band shift accompanied by an improvement in PCF bandwidth. Moreover, nanostructured PCFs also achieved reduced confinement losses and improved MFD which is very important in long-distance remote sensing applications
    corecore