2,208 research outputs found
Error bounds for the asymptotic expansion of the Hurwitz zeta function
In this paper, we reconsider the large- asymptotic expansion of the
Hurwitz zeta function . New representations for the remainder term
of the asymptotic expansion are found and used to obtain sharp and realistic
error bounds. Applications to the asymptotic expansions of the polygamma
functions, the gamma function, the Barnes -function and the -derivative
of the Hurwitz zeta function are provided. A detailed discussion
on the sharpness of our error bounds is also given.Comment: 16 pages. arXiv admin note: text overlap with arXiv:1606.07961,
accepted for publication in Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Science
Secular Evolution of Galaxy Morphologies
Today we have numerous evidences that spirals evolve dynamically through
various secular or episodic processes, such as bar formation and destruction,
bulge growth and mergers, sometimes over much shorter periods than the standard
galaxy age of 10-15 Gyr. This, coupled to the known properties of the Hubble
sequence, leads to a unique sense of evolution: from Sm to Sa. Linking this to
the known mass components provides new indications on the nature of dark matter
in galaxies. The existence of large amounts of yet undetected dark gas appears
as the most natural option. Bounds on the amount of dark stars can be given
since their formation is mostly irreversible and requires obviously a same
amount of gas.Comment: 8 pages, Latex2e, crckapb.sty macros, 1 Postscript figure, replaced
with TeX source; To be published in the proceeedings of the "Dust-Morphology"
conference, Johannesburg, 22-26 January, 1996, D. Block (ed.), (Kluwer
Dordrecht
Galaxy Harassment and the Evolution of Clusters of Galaxies
Disturbed spiral galaxies with high rates of star formation pervaded clusters
of galaxies just a few billion years ago, but nearby clusters exclude spirals
in favor of ellipticals. ``Galaxy harassment" (frequent high speed galaxy
encounters) drives the morphological transformation of galaxies in clusters,
provides fuel for quasars in subluminous hosts and leaves detectable debris
arcs. Simulated images of harassed galaxies are strikingly similar to the
distorted spirals in clusters at observed by the Hubble Space
Telescope.Comment: Submitted to Nature. Latex file, 7 pages, 10 photographs in gif and
jpeg format included. 10 compressed postscript figures and text available
using anonymous ftp from ftp://ftp-hpcc.astro.washington.edu/pub/hpcc/moore/
(mget *) Also available at http://www-hpcc.astro.washington.edu/papers
High-density information storage in an absolutely defined aperiodic sequence of monodisperse copolyester
Synthesis of a polymer composed of a large discrete number of chemically distinct monomers in an absolutely defined aperiodic sequence remains a challenge in polymer chemistry. The synthesis has largely been limited to oligomers having a limited number of repeating units due to the difficulties associated with the step-by-step addition of individual monomers to achieve high molecular weights. Here we report the copolymers of ??-hydroxy acids, poly(phenyllactic-co-lactic acid) (PcL) built via the cross-convergent method from four dyads of monomers as constituent units. Our proposed method allows scalable synthesis of sequence-defined PcL in a minimal number of coupling steps from reagents in stoichiometric amounts. Digital information can be stored in an aperiodic sequence of PcL, which can be fully retrieved as binary code by mass spectrometry sequencing. The information storage density (bit/Da) of PcL is 50% higher than DNA, and the storage capacity of PcL can also be increased by adjusting the molecular weight (~38???kDa)
Star forming dwarf galaxies
Star forming dwarf galaxies (SFDGs) have a high gas content and low
metallicities, reminiscent of the basic entities in hierarchical galaxy
formation scenarios. In the young universe they probably also played a major
role in the cosmic reionization. Their abundant presence in the local volume
and their youthful character make them ideal objects for detailed studies of
the initial stellar mass function (IMF), fundamental star formation processes
and its feedback to the interstellar medium. Occasionally we witness SFDGs
involved in extreme starbursts, giving rise to strongly elevated production of
super star clusters and global superwinds, mechanisms yet to be explored in
more detail. SFDGs is the initial state of all dwarf galaxies and the relation
to the environment provides us with a key to how different types of dwarf
galaxies are emerging. In this review we will put the emphasis on the exotic
starburst phase, as it seems less important for present day galaxy evolution
but perhaps fundamental in the initial phase of galaxy formation.Comment: To appear in JENAM Symposium "Dwarf Galaxies: Keys to Galaxy
Formation and Evolution", P. Papaderos, G. Hensler, S. Recchi (eds.). Lisbon,
September 2010, Springer Verlag, in pres
The Hubble Constant
I review the current state of determinations of the Hubble constant, which
gives the length scale of the Universe by relating the expansion velocity of
objects to their distance. There are two broad categories of measurements. The
first uses individual astrophysical objects which have some property that
allows their intrinsic luminosity or size to be determined, or allows the
determination of their distance by geometric means. The second category
comprises the use of all-sky cosmic microwave background, or correlations
between large samples of galaxies, to determine information about the geometry
of the Universe and hence the Hubble constant, typically in a combination with
other cosmological parameters. Many, but not all, object-based measurements
give values of around 72-74km/s/Mpc , with typical errors of 2-3km/s/Mpc.
This is in mild discrepancy with CMB-based measurements, in particular those
from the Planck satellite, which give values of 67-68km/s/Mpc and typical
errors of 1-2km/s/Mpc. The size of the remaining systematics indicate that
accuracy rather than precision is the remaining problem in a good determination
of the Hubble constant. Whether a discrepancy exists, and whether new physics
is needed to resolve it, depends on details of the systematics of the
object-based methods, and also on the assumptions about other cosmological
parameters and which datasets are combined in the case of the all-sky methods.Comment: Extensively revised and updated since the 2007 version: accepted by
Living Reviews in Relativity as a major (2014) update of LRR 10, 4, 200
Cold gas accretion in galaxies
Evidence for the accretion of cold gas in galaxies has been rapidly
accumulating in the past years. HI observations of galaxies and their
environment have brought to light new facts and phenomena which are evidence of
ongoing or recent accretion:
1) A large number of galaxies are accompanied by gas-rich dwarfs or are
surrounded by HI cloud complexes, tails and filaments. It may be regarded as
direct evidence of cold gas accretion in the local universe. It is probably the
same kind of phenomenon of material infall as the stellar streams observed in
the halos of our galaxy and M31. 2) Considerable amounts of extra-planar HI
have been found in nearby spiral galaxies. While a large fraction of this gas
is produced by galactic fountains, it is likely that a part of it is of
extragalactic origin. 3) Spirals are known to have extended and warped outer
layers of HI. It is not clear how these have formed, and how and for how long
the warps can be sustained. Gas infall has been proposed as the origin. 4) The
majority of galactic disks are lopsided in their morphology as well as in their
kinematics. Also here recent accretion has been advocated as a possible cause.
In our view, accretion takes place both through the arrival and merging of
gas-rich satellites and through gas infall from the intergalactic medium (IGM).
The infall may have observable effects on the disk such as bursts of star
formation and lopsidedness. We infer a mean ``visible'' accretion rate of cold
gas in galaxies of at least 0.2 Msol/yr. In order to reach the accretion rates
needed to sustain the observed star formation (~1 Msol/yr), additional infall
of large amounts of gas from the IGM seems to be required.Comment: To appear in Astronomy & Astrophysics Reviews. 34 pages.
Full-resolution version available at
http://www.astron.nl/~oosterlo/accretionRevie
CMB Telescopes and Optical Systems
The cosmic microwave background radiation (CMB) is now firmly established as
a fundamental and essential probe of the geometry, constituents, and birth of
the Universe. The CMB is a potent observable because it can be measured with
precision and accuracy. Just as importantly, theoretical models of the Universe
can predict the characteristics of the CMB to high accuracy, and those
predictions can be directly compared to observations. There are multiple
aspects associated with making a precise measurement. In this review, we focus
on optical components for the instrumentation used to measure the CMB
polarization and temperature anisotropy. We begin with an overview of general
considerations for CMB observations and discuss common concepts used in the
community. We next consider a variety of alternatives available for a designer
of a CMB telescope. Our discussion is guided by the ground and balloon-based
instruments that have been implemented over the years. In the same vein, we
compare the arc-minute resolution Atacama Cosmology Telescope (ACT) and the
South Pole Telescope (SPT). CMB interferometers are presented briefly. We
conclude with a comparison of the four CMB satellites, Relikt, COBE, WMAP, and
Planck, to demonstrate a remarkable evolution in design, sensitivity,
resolution, and complexity over the past thirty years.Comment: To appear in: Planets, Stars and Stellar Systems (PSSS), Volume 1:
Telescopes and Instrumentatio
Evaluation of the current knowledge limitations in breast cancer research: a gap analysis
BACKGROUND
A gap analysis was conducted to determine which areas of breast cancer research, if targeted by researchers and funding bodies, could produce the greatest impact on patients.
METHODS
Fifty-six Breast Cancer Campaign grant holders and prominent UK breast cancer researchers participated in a gap analysis of current breast cancer research. Before, during and following the meeting, groups in seven key research areas participated in cycles of presentation, literature review and discussion. Summary papers were prepared by each group and collated into this position paper highlighting the research gaps, with recommendations for action.
RESULTS
Gaps were identified in all seven themes. General barriers to progress were lack of financial and practical resources, and poor collaboration between disciplines. Critical gaps in each theme included: (1) genetics (knowledge of genetic changes, their effects and interactions); (2) initiation of breast cancer (how developmental signalling pathways cause ductal elongation and branching at the cellular level and influence stem cell dynamics, and how their disruption initiates tumour formation); (3) progression of breast cancer (deciphering the intracellular and extracellular regulators of early progression, tumour growth, angiogenesis and metastasis); (4) therapies and targets (understanding who develops advanced disease); (5) disease markers (incorporating intelligent trial design into all studies to ensure new treatments are tested in patient groups stratified using biomarkers); (6) prevention (strategies to prevent oestrogen-receptor negative tumours and the long-term effects of chemoprevention for oestrogen-receptor positive tumours); (7) psychosocial aspects of cancer (the use of appropriate psychosocial interventions, and the personal impact of all stages of the disease among patients from a range of ethnic and demographic backgrounds).
CONCLUSION
Through recommendations to address these gaps with future research, the long-term benefits to patients will include: better estimation of risk in families with breast cancer and strategies to reduce risk; better prediction of drug response and patient prognosis; improved tailoring of treatments to patient subgroups and development of new therapeutic approaches; earlier initiation of treatment; more effective use of resources for screening populations; and an enhanced experience for people with or at risk of breast cancer and their families. The challenge to funding bodies and researchers in all disciplines is to focus on these gaps and to drive advances in knowledge into improvements in patient care
Numerical simulation of blood flow and pressure drop in the pulmonary arterial and venous circulation
A novel multiscale mathematical and computational model of the pulmonary circulation is presented and used to analyse both arterial and venous pressure and flow. This work is a major advance over previous studies by Olufsen et al. (Ann Biomed Eng 28:1281–1299, 2012) which only considered the arterial circulation. For the first three generations of vessels within the pulmonary circulation, geometry is specified from patient-specific measurements obtained using magnetic resonance imaging (MRI). Blood flow and pressure in the larger arteries and veins are predicted using a nonlinear, cross-sectional-area-averaged system of equations for a Newtonian fluid in an elastic tube. Inflow into the main pulmonary artery is obtained from MRI measurements, while pressure entering the left atrium from the main pulmonary vein is kept constant at the normal mean value of 2 mmHg. Each terminal vessel in the network of ‘large’ arteries is connected to its corresponding terminal vein via a network of vessels representing the vascular bed of smaller arteries and veins. We develop and implement an algorithm to calculate the admittance of each vascular bed, using bifurcating structured trees and recursion. The structured-tree models take into account the geometry and material properties of the ‘smaller’ arteries and veins of radii ≥ 50 μ m. We study the effects on flow and pressure associated with three classes of pulmonary hypertension expressed via stiffening of larger and smaller vessels, and vascular rarefaction. The results of simulating these pathological conditions are in agreement with clinical observations, showing that the model has potential for assisting with diagnosis and treatment for circulatory diseases within the lung
- …
