689 research outputs found
Structure and mechanism of human DNA polymerase η
The variant form of the human syndrome xeroderma pigmentosum (XPV) is caused by a deficiency in DNA polymerase eta (Pol eta), a DNA polymerase that enables replication through ultraviolet-induced pyrimidine dimers. Here we report high-resolution crystal structures of human Pol eta at four consecutive steps during DNA synthesis through cis-syn cyclobutane thymine dimers. Pol eta acts like a 'molecular splint' to stabilize damaged DNA in a normal B-form conformation. An enlarged active site accommodates the thymine dimer with excellent stereochemistry for two-metal ion catalysis. Two residues conserved among Pol eta orthologues form specific hydrogen bonds with the lesion and the incoming nucleotide to assist translesion synthesis. On the basis of the structures, eight Pol eta missense mutations causing XPV can be rationalized as undermining the molecular splint or perturbing the active-site alignment. The structures also provide an insight into the role of Pol eta in replicating through D loop and DNA fragile sites
Recommended from our members
Measurement of Λ (1520) production in pp collisions at √s=7TeV and p–Pb collisions at √sNN=5.02TeV
The production of the Λ (1520) baryonic resonance has been measured at midrapidity in inelastic pp collisions at s=7TeV and in p–Pb collisions at sNN=5.02TeV for non-single diffractive events and in multiplicity classes. The resonance is reconstructed through its hadronic decay channel Λ (1520) → pK - and the charge conjugate with the ALICE detector. The integrated yields and mean transverse momenta are calculated from the measured transverse momentum distributions in pp and p–Pb collisions. The mean transverse momenta follow mass ordering as previously observed for other hyperons in the same collision systems. A Blast-Wave function constrained by other light hadrons (π, K, KS0, p, Λ) describes the shape of the Λ (1520) transverse momentum distribution up to 3.5GeV/c in p–Pb collisions. In the framework of this model, this observation suggests that the Λ (1520) resonance participates in the same collective radial flow as other light hadrons. The ratio of the yield of Λ (1520) to the yield of the ground state particle Λ remains constant as a function of charged-particle multiplicity, suggesting that there is no net effect of the hadronic phase in p–Pb collisions on the Λ (1520) yield
Recommended from our members
Measurement of prompt D0, D+, D*+, and DS+ production in p–Pb collisions at √sNN = 5.02 TeV
The measurement of the production of prompt D0, D+, D*+, and DS+ mesons in proton–lead (p–Pb) collisions at the centre-of-mass energy per nucleon pair of sNN = 5.02 TeV, with an integrated luminosity of 292 ± 11 μb−1, are reported. Differential production cross sections are measured at mid-rapidity (−0.96 < ycms< 0.04) as a function of transverse momentum (pT) in the intervals 0 < pT< 36 GeV/c for D0, 1 < pT< 36 GeV/c for D+ and D*+, and 2 < pT< 24 GeV/c for D+ mesons. For each species, the nuclear modification factor RpPb is calculated as a function of pT using a proton-proton (pp) ref- erence measured at the same collision energy. The results are compatible with unity in the whole pT range. The average of the non-strange D mesons RpPb is compared with theoretical model predictions that include initial-state effects and parton transport model predictions. The pT dependence of the D0, D+, and D*+ nuclear modification factors is also reported in the interval 1 < pT< 36 GeV/c as a function of the collision centrality, and the central-to-peripheral ratios are computed from the D-meson yields measured in different centrality classes. The results are further compared with charged-particle measurements and a similar trend is observed in all the centrality classes. The ratios of the pT-differential cross sections of D0, D+, D*+, and DS+ mesons are also reported. The DS+ and D+ yields are compared as a function of the charged-particle multiplicity for several pT intervals. No modification in the relative abundances of the four species is observed with respect to pp collisions within the statistical and systematic uncertainties. [Figure not available: see fulltext.]
Recommended from our members
Measurement of electrons from heavy-flavour hadron decays as a function of multiplicity in p-Pb collisions at √sNN = 5.02 TeV
The multiplicity dependence of electron production from heavy-flavour hadron decays as a function of transverse momentum was measured in p-Pb collisions at sNN = 5.02 TeV using the ALICE detector at the LHC. The measurement was performed in the centre-of-mass rapidity interval −1.07 < ycms< 0.14 and transverse momentum interval 2 < pT< 16 GeV/c. The multiplicity dependence of the production of electrons from heavy-flavour hadron decays was studied by comparing the pT spectra measured for different multiplicity classes with those measured in pp collisions (QpPb) and in peripheral p-Pb collisions (Qcp). The QpPb results obtained are consistent with unity within uncertainties in the measured pT interval and event classes. This indicates that heavy-flavour decay electron production is consistent with binary scaling and independent of the geometry of the collision system. Additionally, the results suggest that cold nuclear matter effects are negligible within uncertainties, in the production of heavy-flavour decay electrons at midrapidity in p-Pb collisions. [Figure not available: see fulltext.
Slab melting as a barrier to deep carbon subduction
Interactions between crustal and mantle reservoirs dominate the surface inventory of volatile elements over geological time, moderating atmospheric composition and maintaining a lifesupporting planet1. While volcanoes expel volatile components into surface reservoirs, subduction of oceanic crust is responsible for replenishment of mantle reservoirs2,3. Many natural, ‘superdeep’ diamonds originating in the deep upper mantle and transition zone host mineral inclusions, indicating an affinity to subducted oceanic crust4–7. Here we show that the majority of slab geotherms will intersect a deep depression along the melting curve of carbonated oceanic crust at depths of approximately 300 to 700 kilometres, creating a barrier to direct carbonate recycling into the deep mantle. Low-degree partial melts are alkaline carbonatites that are highly reactive with reduced ambient mantle, producing diamond. Many inclusions in superdeep diamonds are best explained by carbonate melt–peridotite reaction. A deep carbon barrier may dominate the recycling of carbon in the mantle and contribute to chemical and isotopic heterogeneity of the mantle reservoir
Recommended from our members
Inclusive J/ψ production at mid-rapidity in pp collisions at √s = 5.02 TeV
Inclusive J/ψ production is studied in minimum-bias proton-proton collisions at a centre-of-mass energy of s = 5.02 TeV by ALICE at the CERN LHC. The measurement is performed at mid-rapidity (|y| < 0.9) in the dielectron decay channel down to zero transverse momentum pT, using a data sample corresponding to an integrated luminosity of Lint = 19.4 ± 0.4 nb−1. The measured pT-integrated inclusive J/ψ production cross sec- tion is dσ/dy = 5.64 ± 0.22(stat.) ± 0.33(syst.) ± 0.12(lumi.) μb. The pT-differential cross section d2σ/dpTdy is measured in the pT range 0–10 GeV/c and compared with state-of- the-art QCD calculations. The J/ψ 〈pT〉 and 〈pT2〉 are extracted and compared with results obtained at other collision energies. [Figure not available: see fulltext.]
Effective Rheology of Bubbles Moving in a Capillary Tube
We calculate the average volumetric flux versus pressure drop of bubbles
moving in a single capillary tube with varying diameter, finding a square-root
relation from mapping the flow equations onto that of a driven overdamped
pendulum. The calculation is based on a derivation of the equation of motion of
a bubble train from considering the capillary forces and the entropy production
associated with the viscous flow. We also calculate the configurational
probability of the positions of the bubbles.Comment: 4 pages, 1 figur
Recommended from our members
Measurement of ϒ(1S) Elliptic Flow at Forward Rapidity in Pb-Pb Collisions at sqrt[s_{NN}]=5.02 TeV.
The first measurement of the ϒ(1S) elliptic flow coefficient (v_{2}) is performed at forward rapidity (2.
Recommended from our members
Measurement of charged jet cross section in pp collisions at s =5.02 TeV
The cross section of jets reconstructed from charged particles is measured in the transverse momentum range of
Recommended from our members
Studies of J/ψ production at forward rapidity in Pb–Pb collisions at √sNN = 5.02 TeV
The inclusive J/ψ production in Pb–Pb collisions at the center-of-mass energy per nucleon pair sNN = 5.02 TeV, measured with the ALICE detector at the CERN LHC, is reported. The J/ψ meson is reconstructed via the dimuon decay channel at forward rapidity (2.5 < y < 4) down to zero transverse momentum. The suppression of the J/ψ yield in Pb–Pb collisions with respect to binary-scaled pp collisions is quantified by the nuclear modification factor (RAA). The RAA at sNN = 5.02 TeV is presented and compared with previous measurements at sNN = 2.76 TeV as a function of the centrality of the collision, and of the J/ψ transverse momentum and rapidity. The inclusive J/ψ RAA shows a suppression increasing toward higher transverse momentum, with a steeper dependence for central collisions. The modification of the J/ψ average transverse momentum and average squared transverse momentum is also studied. Comparisons with the results of models based on a transport equation and on statistical hadronization are carried out. [Figure not available: see fulltext.
- …
