77 research outputs found
Fine-scale spatial variability of heat-related mortality in Philadelphia County, USA, from 1983-2008: a case-series analysis
<p>Abstract</p> <p>Background</p> <p>High temperature and humidity conditions are associated with short-term elevations in the mortality rate in many United States cities. Previous research has quantified this relationship in an aggregate manner over large metropolitan areas, but within these areas the response may differ based on local-scale variability in climate, population characteristics, and socio-economic factors.</p> <p>Methods</p> <p>We compared the mortality response for 48 Zip Code Tabulation Areas (ZCTAs) comprising Philadelphia County, PA to determine if certain areas are associated with elevated risk during high heat stress conditions. A randomization test was used to identify mortality exceedances for various apparent temperature thresholds at both the city and local scale. We then sought to identify the environmental, demographic, and social factors associated with high-risk areas via principal components regression.</p> <p>Results</p> <p>Citywide mortality increases by 9.3% on days following those with apparent temperatures over 34°C observed at 7:00 p.m. local time. During these conditions, elevated mortality rates were found for 10 of the 48 ZCTAs concentrated in the west-central portion of the County. Factors related to high heat mortality risk included proximity to locally high surface temperatures, low socioeconomic status, high density residential zoning, and age.</p> <p>Conclusions</p> <p>Within the larger Philadelphia metropolitan area, there exists statistically significant fine-scale spatial variability in the mortality response to high apparent temperatures. Future heat warning systems and mitigation and intervention measures could target these high risk areas to reduce the burden of extreme weather on summertime morbidity and mortality.</p
Leaf Shapes and Venation Patterns
We present an analysis of leaf shapes and venation patterns based on a new assumption of the way how water flows in plants, together with the assumption that leaf shapes and leaf venation patterns have evolved in time such as to provide easier and easier access to its internal currents (Constructal Law). Then, by minimizing the global resistance to flow we anticipate the number of veins in relation to leaf shape (slenderness and vein insertion angle) and prevalent environmental conditions (represented by the potential for leaf water intake from the atmosphere). We also anticipate that leaves in dry climates will be slender and shorter, and with more veins as compared with those of plants adapted to wet environments. We finish by showing some cases in which the theory describes the characteristic of real leaves closely
Water ascent in trees and lianas: the cohesion-tension theory revisited in the wake of Otto Renner
A rare loss-of-function variant of ADAM17 is associated with late-onset familial Alzheimer disease
Common variants of about 20 genes contributing to AD risk have so far been identified through genome-wide association studies (GWAS). However, there is still a large proportion of heritability that might be explained by rare but functionally important variants. One of the so far identified genes with rare AD causing variants is ADAM10. Using whole-genome sequencing we now identified a single rare nonsynonymous variant (SNV) rs142946965 [p.R215I] in ADAM17 co-segregating with an autosomal-dominant pattern of late-onset AD in one family. Subsequent genotyping and analysis of available whole-exome sequencing data of additional case/control samples from Germany, UK, and USA identified five variant carriers among AD patients only. The mutation inhibits pro-protein cleavage and the formation of the active enzyme, thus leading to loss-of-function of ADAM17 alpha-secretase. Further, we identified a strong negative correlation between ADAM17 and APP gene expression in human brain and present in vitro evidence that ADAM17 negatively controls the expression of APP. As a consequence, p.R215I mutation of ADAM17 leads to elevated Aß formation in vitro. Together our data supports a causative association of the identified ADAM17 variant in the pathogenesis of AD
Creating the park cool island in an inner-city neighborhood: heat mitigation strategy for Phoenix, AZ
Climatology and variability of the start, end, and length of the frost-free season across Iran
Climate change can manifest in many ways, including impacts on the start, end, and duration of the frost-free season. We examined the climatology and variability of the first fall frost day (FFFD), last spring frost day (LSFD), and length of the frost-free season (LFFS) across Iran for the period 1978-2017. Trend analysis revealed that FFFD shifted later by 6.4 d over the study period while LSFD shifted earlier by slightly over 2 wk, and LFFS is now >3 wk longer than it was only 4 decades ago. Since land-use changes around meteorological stations may affect the temperature measured at these stations (especially the magnitudes of nocturnal cooling rates), atmospheric thickness changes, which reflect temperature changes and are independent of station-based measurements, were used as a secondary dataset to investigate minimum temperature trends. The analysis revealed a very strong relationship between frost-related indices and atmospheric thickness. Sequential Mann-Kendall statistical analysis revealed abrupt changes in the applied frost-related indices, minimum temperatures, and atmospheric thicknesses. The first abrupt changes in FFFD and LFFS occurred around 1996, which matched the timing of abrupt changes in atmospheric thickness over Iran. Interestingly, seasonal trend analyses of minimum temperature over the Northern Hemisphere using Era5 reanalysis data indicated consistent regional patterns of warming over the last 4 decades. The results suggest that the increase in LFFS is largely driven by regional-scale warming as opposed to local urbanization and/or land-use changes. Our results document an important and ongoing change of potentially considerable interest to agriculturalists in Iran and elsewhere.</jats:p
The effect of urban ground cover on microclimate, growth and leaf gas exchange of oleander in Phoenix, Arizona
Recent Observations of Human-induced Asymmetric Effects on Climate in Very High-Altitude Area
Seasons in the sun - weather and climate front-page news stories in Europe’s rainiest city, Bergen, Norway
- …
