51 research outputs found
Intraspecies Transmission of BASE Induces Clinical Dullness and Amyotrophic Changes
The disease phenotype of bovine spongiform encephalopathy (BSE) and the molecular/ biological properties of its prion strain, including the host range and the characteristics of BSE-related disorders, have been extensively studied since its discovery in 1986. In recent years, systematic testing of the brains of cattle coming to slaughter resulted in the identification of at least two atypical forms of BSE. These emerging disorders are characterized by novel conformers of the bovine pathological prion protein (PrPTSE), named high-type (BSE-H) and low-type (BSE-L). We recently reported two Italian atypical cases with a PrPTSE type identical to BSE-L, pathologically characterized by PrP amyloid plaques and known as bovine amyloidotic spongiform encephalopathy (BASE). Several lines of evidence suggest that BASE is highly virulent and easily transmissible to a wide host range. Experimental transmission to transgenic mice overexpressing bovine PrP (Tgbov XV) suggested that BASE is caused by a prion strain distinct from the BSE isolate. In the present study, we experimentally infected Friesian and Alpine brown cattle with Italian BSE and BASE isolates via the intracerebral route. BASE-infected cattle developed amyotrophic changes accompanied by mental dullness. The molecular and neuropathological profiles, including PrP deposition pattern, closely matched those observed in the original cases. This study provides clear evidence of BASE as a distinct prion isolate and discloses a novel disease phenotype in cattle
Clinical and Pathologic Features of H-Type Bovine Spongiform Encephalopathy Associated with E211K Prion Protein Polymorphism
The majority of bovine spongiform encephalopathy (BSE) cases have been ascribed to the classical form of the disease. H-type and L-type BSE cases have atypical molecular profiles compared to classical BSE and are thought to arise spontaneously. However, one case of H-type BSE was associated with a heritable E211K mutation in the prion protein gene. The purpose of this study was to describe transmission of this unique isolate of H-type BSE when inoculated into a calf of the same genotype by the intracranial route. Electroretinograms were used to demonstrate preclinical deficits in retinal function, and optical coherence tomography was used to demonstrate an antemortem decrease in retinal thickness. The calf rapidly progressed to clinical disease (9.4 months) and was necropsied. Widespread distribution of abnormal prion protein was demonstrated within neural tissues by western blot and immunohistochemistry. While this isolate is categorized as BSE-H due to a higher molecular mass of the unglycosylated PrPSc isoform, a strong labeling of all 3 PrPSc bands with monoclonal antibodies 6H4 and P4, and a second unglycosylated band at approximately 14 kDa when developed with antibodies that bind in the C-terminal region, it is unique from other described cases of BSE-H because of an additional band 23 kDa demonstrated on western blots of the cerebellum. This work demonstrates that this isolate is transmissible, has a BSE-H phenotype when transmitted to cattle with the K211 polymorphism, and has molecular features that distinguish it from other cases of BSE-H described in the literature
Quantitative gait analysis under dual-task in older people with mild cognitive impairment: a reliability study
<p>Abstract</p> <p>Background</p> <p>Reliability of quantitative gait assessment while dual-tasking (walking while doing a secondary task such as talking) in people with cognitive impairment is unknown. Dual-tasking gait assessment is becoming highly important for mobility research with older adults since better reflects their performance in the basic activities of daily living. Our purpose was to establish the test-retest reliability of assessing quantitative gait variables using an electronic walkway in older adults with mild cognitive impairment (MCI) under single and dual-task conditions.</p> <p>Methods</p> <p>The gait performance of 11 elderly individuals with MCI was evaluated using an electronic walkway (GAITRite<sup>® </sup>System) in two sessions, one week apart. Six gait parameters (gait velocity, step length, stride length, step time, stride time, and double support time) were assessed under two conditions: single-task (sG: usual walking) and dual-task (dG: counting backwards from 100 while walking). Test-retest reliability was determined using intra-class correlation coefficient (ICC). Gait variability was measured using coefficient of variation (CoV).</p> <p>Results</p> <p>Eleven participants (average age = 76.6 years, SD = 7.3) were assessed. They were high functioning (Clinical Dementia Rating Score = 0.5) with a mean Mini-Mental Status Exam (MMSE) score of 28 (SD = 1.56), and a mean Montreal Cognitive Assessment (MoCA) score of 22.8 (SD = 1.23). Under dual-task conditions, mean gait velocity (GV) decreased significantly (sGV = 119.11 ± 20.20 cm/s; dGV = 110.88 ± 19.76 cm/s; p = 0.005). Additionally, under dual-task conditions, higher gait variability was found on stride time, step time, and double support time. Test-retest reliability was high (ICC>0.85) for the six parameters evaluated under both conditions.</p> <p>Conclusion</p> <p>In older people with MCI, variability of time-related gait parameters increased with dual-tasking suggesting cognitive control of gait performance. Assessment of quantitative gait variables using an electronic walkway is highly reliable under single and dual-task conditions. The presence of cognitive impairment did not preclude performance of dual-tasking in our sample supporting that this methodology can be reliably used in cognitive impaired older individuals.</p
Respiratory syncytial virus infection is associated with an altered innate immunity and a heightened pro-inflammatory response in the lungs of preterm lambs
<p>Abstract</p> <p>Introduction</p> <p>Factors explaining the greater susceptibility of preterm infants to severe lower respiratory infections with respiratory syncytial virus (RSV) remain poorly understood. Fetal/newborn lambs are increasingly appreciated as a model to study key elements of RSV infection in newborn infants due to similarities in lung alveolar development, immune response, and susceptibility to RSV. Previously, our laboratory demonstrated that preterm lambs had elevated viral antigen and developed more severe lesions compared to full-term lambs at seven days post-infection. Here, we compared the pathogenesis and immunological response to RSV infection in lungs of preterm and full-term lambs.</p> <p>Methods</p> <p>Lambs were delivered preterm by Caesarian section or full-term by natural birth, then inoculated with bovine RSV (bRSV) via the intratracheal route. Seven days post-infection, lungs were collected for evaluation of cytokine production, histopathology and cellular infiltration.</p> <p>Results</p> <p>Compared to full-term lambs, lungs of preterm lambs had a heightened pro-inflammatory response after infection, with significantly increased MCP-1, MIP-1α, IFN-γ, TNF-α and PD-L1 mRNA. RSV infection in the preterm lung was characterized by increased epithelial thickening and periodic acid-Schiff staining, indicative of glycogen retention. Nitric oxide levels were decreased in lungs of infected preterm lambs compared to full-term lambs, indicating alternative macrophage activation. Although infection induced significant neutrophil recruitment into the lungs of preterm lambs, neutrophils produced less myeloperoxidase than those of full-term lambs, suggesting decreased functional activation.</p> <p>Conclusions</p> <p>Taken together, our data suggest that increased RSV load and inadequate immune response may contribute to the enhanced disease severity observed in the lungs of preterm lambs.</p
Prions in Milk from Ewes Incubating Natural Scrapie
Since prion infectivity had never been reported in milk, dairy products originating from transmissible spongiform encephalopathy (TSE)-affected ruminant flocks currently enter unrestricted into the animal and human food chain. However, a recently published study brought the first evidence of the presence of prions in mammary secretions from scrapie-affected ewes. Here we report the detection of consistent levels of infectivity in colostrum and milk from sheep incubating natural scrapie, several months prior to clinical onset. Additionally, abnormal PrP was detected, by immunohistochemistry and PET blot, in lacteal ducts and mammary acini. This PrPSc accumulation was detected only in ewes harbouring mammary ectopic lymphoid follicles that developed consequent to Maedi lentivirus infection. However, bioassay revealed that prion infectivity was present in milk and colostrum, not only from ewes with such lympho-proliferative chronic mastitis, but also from those displaying lesion-free mammary glands. In milk and colostrum, infectivity could be recovered in the cellular, cream, and casein-whey fractions. In our samples, using a Tg 338 mouse model, the highest per ml infectious titre measured was found to be equivalent to that contained in 6 µg of a posterior brain stem from a terminally scrapie-affected ewe. These findings indicate that both colostrum and milk from small ruminants incubating TSE could contribute to the animal TSE transmission process, either directly or through the presence of milk-derived material in animal feedstuffs. It also raises some concern with regard to the risk to humans of TSE exposure associated with milk products from ovine and other TSE-susceptible dairy species
Reduced Lentivirus Susceptibility in Sheep with TMEM154 Mutations
Visna/Maedi, or ovine progressive pneumonia (OPP) as it is known in the United States, is an incurable slow-acting disease of sheep caused by persistent lentivirus infection. This disease affects multiple tissues, including those of the respiratory and central nervous systems. Our aim was to identify ovine genetic risk factors for lentivirus infection. Sixty-nine matched pairs of infected cases and uninfected controls were identified among 736 naturally exposed sheep older than five years of age. These pairs were used in a genome-wide association study with 50,614 markers. A single SNP was identified in the ovine transmembrane protein (TMEM154) that exceeded genome-wide significance (unadjusted p-value 3×10−9). Sanger sequencing of the ovine TMEM154 coding region identified six missense and two frameshift deletion mutations in the predicted signal peptide and extracellular domain. Two TMEM154 haplotypes encoding glutamate (E) at position 35 were associated with infection while a third haplotype with lysine (K) at position 35 was not. Haplotypes encoding full-length E35 isoforms were analyzed together as genetic risk factors in a multi-breed, matched case-control design, with 61 pairs of 4-year-old ewes. The odds of infection for ewes with one copy of a full-length TMEM154 E35 allele were 28 times greater than the odds for those without (p-value<0.0001, 95% CI 5–1,100). In a combined analysis of nine cohorts with 2,705 sheep from Nebraska, Idaho, and Iowa, the relative risk of infection was 2.85 times greater for sheep with a full-length TMEM154 E35 allele (p-value<0.0001, 95% CI 2.36–3.43). Although rare, some sheep were homozygous for TMEM154 deletion mutations and remained uninfected despite a lifetime of significant exposure. Together, these findings indicate that TMEM154 may play a central role in ovine lentivirus infection and removing sheep with the most susceptible genotypes may help eradicate OPP and protect flocks from reinfection
Nebulisation of synthetic lamellar lipids mitigates radiation-induced lung injury in a large animal model
Item originally deposited in University of Edinburgh, Edinburgh Research Explorer Repository at: https://www.research.ed.ac.uk/portal/en/publications/nebulisation-of-synthetic-lamellar-lipids-mitigates-radiationinduced-lung-injury-in-a-large-animal-model(ab917c99-7e7f-4fa1-8d1e-40511ca9abd3).htmlMethods to protect against radiation-induced lung injury (RILI) will facilitate the development of more effective radio-therapeutic protocols for lung cancer and may provide the means to protect the wider population in the event of a deliberate or accidental nuclear or radiological event. We hypothesised that supplementing lipid membranes through nebulization of synthetic lamellar lipids would mitigate RILI. Following pre-treatment with either nebulised lamellar lipids or saline, anaesthetised sheep were prescribed fractionated radiotherapy (30 Gray (Gy) total dose in five 6 Gy fractions at 3–4 days intervals) to a defined unilateral lung volume. Gross pathology in radio-exposed lung 37 days after the first radiation treatment was consistent between treatment groups and consisted of deep red congestion evident on the pleural surface and firmness on palpation. Consistent histopathological features in radio-exposed lung were subpleural, periarteriolar and peribronchial intra-alveolar oedema, alveolar fibrosis, interstitial pneumonia and type II pneumocyte hyperplasia. The synthetic lamellar lipids abrogated radiation-induced alveolar fibrosis and reduced alpha-smooth muscle actin (ASMA) expression in radio-exposed lung compared to saline treated sheep. Administration of synthetic lamellar lipids was also associated with an increased number of cells expressing dendritic cell-lysosomal associated membrane protein throughout the lung.This work was supported by Grant MRC/CIC3/025 awarded to D.C., J.L., J.M., G.M. & J.P. The authors wish to acknowledge the assistance of Dryden Animal Services in the conduct of this work, and the assistance of Dr Helen Brown in relation to experimental design and statistical analysis. The authors are grateful to Lamellar Biomedical Ltd., Strathclyde Business Park, Bellshill, Scotland, United Kingdom, for the supply of LAMELLASOME™ used in this research.8pubpubArticle no: 1331
Human Respiratory Syncytial Virus Memphis 37 Causes Acute Respiratory Disease in Perinatal Lamb Lung
- …
