29 research outputs found

    Pediatric DXA: clinical applications

    Get PDF
    Normal bone mineral accrual requires adequate dietary intake of calcium, vitamin D and other nutrients; hepatic and renal activation of vitamin D; normal hormone levels (thyroid, parathyroid, reproductive and growth hormones); and neuromuscular functioning with sufficient stress upon the skeleton to induce bone deposition. The presence of genetic or acquired diseases and the therapies that are used to treat them can also impact bone health. Since the introduction of clinical DXA in pediatrics in the early 1990s, there has been considerable investigation into the causes of low bone mineral density (BMD) in children. Pediatricians have also become aware of the role adequate bone mass accrual in childhood has in preventing osteoporotic fractures in late adulthood. Additionally, the availability of medications to improve BMD has increased with the development of bisphosphonates. These factors have led to the increased utilization of DXA in pediatrics. This review summarizes much of the previous research regarding BMD in children and is meant to assist radiologists and clinicians with DXA utilization and interpretation

    Orexin-A and Orexin-B During the Postnatal Development of the Rat Brain

    Get PDF
    Orexin-A and orexin-B are hypothalamic neuropeptides isolated from a small group of neurons in the hypothalamus, which project their axons to all major parts of the central nervous system. Despite the extensive information about orexin expression and function at different parts of the nervous system in adults, data about the development and maturation of the orexin system in the brain are a bit contradictory and insufficient. A previous study has found expression of orexins in the hypothalamus after postnatal day 15 only, while others report orexins detection at embryonic stages of brain formation. In the present study, we investigated the distribution of orexin-A and orexin-B neuronal cell bodies and fibers in the brain at three different postnatal stages: 1-week-, 2-week-old and adult rats. By means of immunohistochemical techniques, we demonstrated that a small subset of cells in the lateral hypothalamus, and the perifornical and periventricular areas were orexin-A and orexin-B positive not only in 2-week-old and adult rats but also in 1-week-old animals. In addition, orexin-A and orexin-B expressing neuronal varicosities were found in many other brain regions. These results suggest that orexin-A and orexin-B play an important role in the early postnatal brain development. The widespread distribution of orexinergic projections through all these stages may imply an involvement of the two neurotransmitters in a large variety of physiological and behavioral processes also including higher brain functions like learning and memory

    Genome Wide Analysis of Acute Myeloid Leukemia Reveal Leukemia Specific Methylome and Subtype Specific Hypomethylation of Repeats

    Get PDF
    Methylated DNA immunoprecipitation followed by high-throughput sequencing (MeDIP-seq) has the potential to identify changes in DNA methylation important in cancer development. In order to understand the role of epigenetic modulation in the development of acute myeloid leukemia (AML) we have applied MeDIP-seq to the DNA of 12 AML patients and 4 normal bone marrows. This analysis revealed leukemia-associated differentially methylated regions that included gene promoters, gene bodies, CpG islands and CpG island shores. Two genes (SPHKAP and DPP6) with significantly methylated promoters were of interest and further analysis of their expression showed them to be repressed in AML. We also demonstrated considerable cytogenetic subtype specificity in the methylomes affecting different genomic features. Significantly distinct patterns of hypomethylation of certain interspersed repeat elements were associated with cytogenetic subtypes. The methylation patterns of members of the SINE family tightly clustered all leukemic patients with an enrichment of Alu repeats with a high CpG density (P<0.0001). We were able to demonstrate significant inverse correlation between intragenic interspersed repeat sequence methylation and gene expression with SINEs showing the strongest inverse correlation (R2 = 0.7). We conclude that the alterations in DNA methylation that accompany the development of AML affect not only the promoters, but also the non-promoter genomic features, with significant demethylation of certain interspersed repeat DNA elements being associated with AML cytogenetic subtypes. MeDIP-seq data were validated using bisulfite pyrosequencing and the Infinium array

    Hypertension Canada’s 2018 Guidelines for Diagnosis, Risk Assessment, Prevention, and Treatment of Hypertension in Adults and Children

    Get PDF
    Hypertension Canada provides annually-updated, evidence-based guidelines for the diagnosis, assessment, prevention, and treatment of hypertension in adults and children. This year, the adult and pediatric guidelines are combined in one document. The new 2018 pregnancy-specific hypertension guidelines are published separately. For 2018, 5 new guidelines were introduced, and one existing guideline on the blood pressure thresholds and targets in the setting of thrombolysis for acute ischemic stroke was revised. The use of validated wrist devices for the estimation of blood pressure in individuals with large arm circumference is now included. Guidance is provided for the follow-up measurements of blood pressure, with the use of standardized methods and electronic (oscillometric) upper arm devices in individuals with hypertension, and either ambulatory blood pressure monitoring or home blood pressure monitoring in individuals with white coat effect. We specify that all individuals with hypertension should have an assessment of global cardiovascular risk to promote health behaviours that lower blood pressure. Finally, an angiotensin receptor-neprilysin inhibitor combination should be used in place of either an angiotensin-converting enzyme inhibitor or angiotensin receptor blocker in individuals with heart failure (with ejection fraction &lt; 40%) who are symptomatic despite appropriate doses of guideline-directed heart failure therapies. The specific evidence and rationale underlying each of these guidelines are discussed

    Resources for methylome analysis suitable for gene knockout studies of potential epigenome modifiers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Methylated DNA immunoprecipitation (MeDIP) is a popular enrichment based method and can be combined with sequencing (termed MeDIP-seq) to interrogate the methylation status of cytosines across entire genomes. However, quality control and analysis of MeDIP-seq data have remained to be a challenge.</p> <p>Results</p> <p>We report genome-wide DNA methylation profiles of wild type (wt) and mutant mouse cells, comprising 3 biological replicates of Thymine DNA glycosylase (<it>Tdg</it>) knockout (KO) embryonic stem cells (ESCs), <it>in vitro</it> differentiated neural precursor cells (NPCs) and embryonic fibroblasts (MEFs). The resulting 18 methylomes were analysed with MeDUSA (Methylated DNA Utility for Sequence Analysis), a novel MeDIP-seq computational analysis pipeline for the identification of differentially methylated regions (DMRs). The observed increase of hypermethylation in MEF promoter-associated CpG islands supports a previously proposed role for <it>Tdg</it> in the protection of regulatory regions from epigenetic silencing. Further analysis of genes and regions associated with the DMRs by gene ontology, pathway, and ChIP analyses revealed further insights into <it>Tdg</it> function, including an association of TDG with low-methylated distal regulatory regions.</p> <p>Conclusions</p> <p>We demonstrate that MeDUSA is able to detect both large-scale changes between cells from different stages of differentiation and also small but significant changes between the methylomes of cells that only differ in the KO of a single gene. These changes were validated utilising publicly available datasets and confirm <it>TDG's</it> function in the protection of regulatory regions from epigenetic silencing.</p

    A Spike-Based Grammar Underlies Directional Modification in Network Connectivity: Effect on Bursting Activity and Implications for Bio-Hybrids Systems

    Get PDF
    Developed biological systems are endowed with the ability of interacting with the environment; they sense the external state and react to it by changing their own internal state. Many attempts have been made to build ‘hybrids’ with the ability of perceiving, modifying and reacting to external modifications. Investigation of the rules that govern network changes in a hybrid system may lead to finding effective methods for ‘programming’ the neural tissue toward a desired task. Here we show a new perspective in the use of cortical neuronal cultures from embryonic mouse as a working platform to study targeted synaptic modifications. Differently from the common timing-based methods applied in bio-hybrids robotics, here we evaluated the importance of endogenous spike timing in the information processing. We characterized the influence of a spike-patterned stimulus in determining changes in neuronal synchronization (connectivity strength and precision) of the evoked spiking and bursting activity in the network. We show that tailoring the stimulation pattern upon a neuronal spike timing induces the network to respond stronger and more precisely to the stimulation. Interestingly, the induced modifications are conveyed more consistently in the burst timing. This increase in strength and precision may be a key in the interaction of the network with the external world and may be used to induce directional changes in bio-hybrid systems
    corecore