266 research outputs found
An 800-million-solar-mass black hole in a significantly neutral Universe at redshift 7.5
Quasars are the most luminous non-transient objects known and as a result
they enable studies of the Universe at the earliest cosmic epochs. Despite
extensive efforts, however, the quasar ULAS J1120+0641 at z=7.09 has remained
the only one known at z>7 for more than half a decade. Here we report
observations of the quasar ULAS J134208.10+092838.61 (hereafter J1342+0928) at
redshift z=7.54. This quasar has a bolometric luminosity of 4e13 times the
luminosity of the Sun and a black hole mass of 8e8 solar masses. The existence
of this supermassive black hole when the Universe was only 690 million years
old---just five percent of its current age---reinforces models of early
black-hole growth that allow black holes with initial masses of more than about
1e4 solar masses or episodic hyper-Eddington accretion. We see strong evidence
of absorption of the spectrum of the quasar redwards of the Lyman alpha
emission line (the Gunn-Peterson damping wing), as would be expected if a
significant amount (more than 10 per cent) of the hydrogen in the intergalactic
medium surrounding J1342+0928 is neutral. We derive a significant fraction of
neutral hydrogen, although the exact fraction depends on the modelling.
However, even in our most conservative analysis we find a fraction of more than
0.33 (0.11) at 68 per cent (95 per cent) probability, indicating that we are
probing well within the reionization epoch of the Universe.Comment: Updated to match the final journal versio
Economic-demographic interactions in long-run growth
Cliometrics confirms that Malthus’ model of the pre-industrial economy, in which increases in productivity raise population but higher population drives down wages, is a good description for much of demographic/economic history. A contributor to the Malthusian equilibrium was the Western European Marriage Pattern, the late age of female first marriage, which promised to retard the fall of living standards by restricting fertility. The demographic transition and the transition from Malthusian economies to modern economic growth attracted many Cliometric models surveyed here. A popular model component is that lower levels of mortality over many centuries increased the returns to, or preference for, human capital investment so that technical progress eventually accelerated. This initially boosted birth rates and population growth accelerated. Fertility decline was earliest and most striking in late eighteenth century France. By the 1830s the fall in French marital fertility is consistent with a response to the rising opportunity cost of children. The rest of Europe did not begin to follow until end of the nineteenth century. Interactions between the economy and migration have been modelled with Cliometric structures closely related to those of natural increase and the economy. Wages were driven up by emigration from Europe and reduced in the economies receiving immigrants
Planet Populations as a Function of Stellar Properties
Exoplanets around different types of stars provide a window into the diverse
environments in which planets form. This chapter describes the observed
relations between exoplanet populations and stellar properties and how they
connect to planet formation in protoplanetary disks. Giant planets occur more
frequently around more metal-rich and more massive stars. These findings
support the core accretion theory of planet formation, in which the cores of
giant planets form more rapidly in more metal-rich and more massive
protoplanetary disks. Smaller planets, those with sizes roughly between Earth
and Neptune, exhibit different scaling relations with stellar properties. These
planets are found around stars with a wide range of metallicities and occur
more frequently around lower mass stars. This indicates that planet formation
takes place in a wide range of environments, yet it is not clear why planets
form more efficiently around low mass stars. Going forward, exoplanet surveys
targeting M dwarfs will characterize the exoplanet population around the lowest
mass stars. In combination with ongoing stellar characterization, this will
help us understand the formation of planets in a large range of environments.Comment: Accepted for Publication in the Handbook of Exoplanet
Recommended from our members
Corporate reputation past and future: a review and integration of existing literature and a framework for future research
The concept of corporate reputation is steadily growing in interest among management researchers and practitioners. In this article, we trace key milestones in the development of reputation literature over the past six decades to suggest important research gaps as well as to provide contextual background for a subsequent integration of approaches and future outlook. In particular we explore the need for better categorised outcomes; a wider range of causes; and a deeper understanding of contingencies and moderators to advance the field beyond its current state while also taking account of developments in the macro business environment. The article concludes by presenting a novel reputation framework that integrates insights from reputation theory and studies, outlines gaps in knowledge and offers directions for future research
Mechanisms of MEOX1 and MEOX2 Regulation of the Cyclin Dependent Kinase Inhibitors p21CIP1/WAF1 and p16INK4a in Vascular Endothelial Cells
Senescence, the state of permanent cell cycle arrest, has been associated
with endothelial cell dysfunction and atherosclerosis. The cyclin dependent
kinase inhibitors p21CIP1/WAF1 and p16INK4a govern the
G1/S cell cycle checkpoint and are essential for determining whether
a cell enters into an arrested state. The homeodomain transcription factor
MEOX2 is an important regulator of vascular cell proliferation and is a direct
transcriptional activator of both p21CIP1/WAF1 and p16INK4a.
MEOX1 and MEOX2 have been shown to be partially functionally redundant during
development, suggesting that they regulate similar target genes in
vivo. We compared the ability of MEOX1 and MEOX2 to activate p21CIP1/WAF1
and p16INK4a expression and induce endothelial cell cycle arrest.
Our results demonstrate for the first time that MEOX1 regulates the MEOX2
target genes p21CIP1/WAF1 and p16INK4a. In addition,
increased expression of either of the MEOX homeodomain transcription factors
leads to cell cycle arrest and endothelial cell senescence. Furthermore, we
show that the mechanism of transcriptional activation of these cyclin dependent
kinase inhibitor genes by MEOX1 and MEOX2 is distinct. MEOX1 and MEOX2 activate
p16INK4a in a DNA binding dependent manner, whereas they induce
p21CIP1/WAF1 in a DNA binding independent manner
Structural and Functional Profiling of the Human Histone Methyltransferase SMYD3
The SET and MYND Domain (SMYD) proteins comprise a unique family of multi-domain SET histone methyltransferases that are implicated in human cancer progression. Here we report an analysis of the crystal structure of the full length human SMYD3 in a complex with an analog of the S-adenosyl methionine (SAM) methyl donor cofactor. The structure revealed an overall compact architecture in which the “split-SET” domain adopts a canonical SET domain fold and closely assembles with a Zn-binding MYND domain and a C-terminal superhelical 9 α-helical bundle similar to that observed for the mouse SMYD1 structure. Together, these structurally interlocked domains impose a highly confined binding pocket for histone substrates, suggesting a regulated mechanism for its enzymatic activity. Our mutational and biochemical analyses confirm regulatory roles of the unique structural elements both inside and outside the core SET domain and establish a previously undetected preference for trimethylation of H4K20
Iron: a target for the management of Kaposi's sarcoma?
BACKGROUND: Kaposi's sarcoma (KS) is a mesenchymal tumour associated with human herpesvirus-8 infection. However, the incidence of human herpesvirus-8 infection is far higher than the prevalence of KS, suggesting that viral infection per se is not sufficient for the development of malignancy and that one or more additional cofactors are required. DISCUSSION: Epidemiological data suggest that iron may be one of the cofactors involved in the pathogenesis of KS. Iron is a well-known carcinogen and may favour KS growth through several pathways. Based on the apoptotic and antiproliferative effect of iron chelation on KS cells, it is suggested that iron withdrawal strategies could be developed for the management of KS. Studies using potent iron chelators in suitable KS animal models are critical to evaluate whether iron deprivation may be a useful anti-KS strategy. SUMMARY: It is suggested that iron may be one of non-viral co-factors involved of KS pathogenesis and that iron withdrawal strategies might interfere with tumour growth in patients with KS
Molecular Mechanisms of Fiber Differential Development between G. barbadense and G. hirsutum Revealed by Genetical Genomics
Cotton fiber qualities including length, strength and fineness are known to be controlled by genes affecting cell elongation and secondary cell wall (SCW) biosynthesis, but the molecular mechanisms that govern development of fiber traits are largely unknown. Here, we evaluated an interspecific backcrossed population from G. barbadense cv. Hai7124 and G. hirsutum acc. TM-1 for fiber characteristics in four-year environments under field conditions, and detected 12 quantitative trait loci (QTL) and QTL-by-environment interactions by multi-QTL joint analysis. Further analysis of fiber growth and gene expression between TM-1 and Hai7124 showed greater differences at 10 and 25 days post-anthesis (DPA). In this two period important for fiber performances, we integrated genome-wide expression profiling with linkage analysis using the same genetic materials and identified in total 916 expression QTL (eQTL) significantly (P<0.05) affecting the expression of 394 differential genes. Many positional cis-/trans-acting eQTL and eQTL hotspots were detected across the genome. By comparative mapping of eQTL and fiber QTL, a dataset of candidate genes affecting fiber qualities was generated. Real-time quantitative RT-PCR (qRT-PCR) analysis confirmed the major differential genes regulating fiber cell elongation or SCW synthesis. These data collectively support molecular mechanism for G. hirsutum and G. barbadense through differential gene regulation causing difference of fiber qualities. The down-regulated expression of abscisic acid (ABA) and ethylene signaling pathway genes and high-level and long-term expression of positive regulators including auxin and cell wall enzyme genes for fiber cell elongation at the fiber developmental transition stage may account for superior fiber qualities
The global burden of typhoid and parathypoid fevers: a systematic analyses for the Global Burden of Disease Study 2017
Background Efforts to quantify the global burden of enteric fever are valuable for understanding the health lost and
the large-scale spatial distribution of the disease. We present the estimates of typhoid and paratyphoid fever burden
from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017, and the approach taken to
produce them.
Methods For this systematic analysis we broke down the relative contributions of typhoid and paratyphoid fevers by
country, year, and age, and analysed trends in incidence and mortality. We modelled the combined incidence of
typhoid and paratyphoid fevers and split these total cases proportionally between typhoid and paratyphoid fevers
using aetiological proportion models. We estimated deaths using vital registration data for countries with sufficiently
high data completeness and using a natural history approach for other locations. We also estimated disability-adjusted
life-years (DALYs) for typhoid and paratyphoid fevers.
Findings Globally, 14·3 million (95% uncertainty interval [UI] 12·5–16·3) cases of typhoid and paratyphoid
fevers occurred in 2017, a 44·6% (42·2–47·0) decline from 25·9 million (22·0–29·9) in 1990. Age-standardised
incidence rates declined by 54·9% (53·4–56·5), from 439·2 (376·7–507·7) per 100000 person-years in 1990, to
197·8 (172·0–226·2) per 100 000 person-years in 2017. In 2017, Salmonella enterica serotype Typhi caused
76·3% (71·8–80·5) of cases of enteric fever. We estimated a global case fatality of 0·95% (0·54–1·53) in 2017, with
higher case fatality estimates among children and older adults, and among those living in lower-income countries.
We therefore estimated 135·9 thousand (76·9–218·9) deaths from typhoid and paratyphoid fever globally in 2017, a
41·0% (33·6–48·3) decline from 230·5 thousand (131·2–372·6) in 1990. Overall, typhoid and paratyphoid fevers were
responsible for 9·8 million (5·6–15·8) DALYs in 2017, down 43·0% (35·5–50·6) from 17·2 million (9·9–27·8) DALYs
in 1990.
Interpretation Despite notable progress, typhoid and paratyphoid fevers remain major causes of disability and death,
with billions of people likely to be exposed to the pathogens. Although improvements in water and sanitation remain
essential, increased vaccine use (including with typhoid conjugate vaccines that are effective in infants and young
children and protective for longer periods) and improved data and surveillance to inform vaccine rollout are likely to
drive the greatest improvements in the global burden of the diseas
Recommended from our members
Ionization electron signal processing in single phase LArTPCs. Part I. Algorithm Description and quantitative evaluation with MicroBooNE simulation
© 2018 IOP Publishing Ltd and Sissa Medialab. We describe the concept and procedure of drifted-charge extraction developed in the MicroBooNE experiment, a single-phase liquid argon time projection chamber (LArTPC). This technique converts the raw digitized TPC waveform to the number of ionization electrons passing through a wire plane at a given time. A robust recovery of the number of ionization electrons from both induction and collection anode wire planes will augment the 3D reconstruction, and is particularly important for tomographic reconstruction algorithms. A number of building blocks of the overall procedure are described. The performance of the signal processing is quantitatively evaluated by comparing extracted charge with the true charge through a detailed TPC detector simulation taking into account position-dependent induced current inside a single wire region and across multiple wires. Some areas for further improvement of the performance of the charge extraction procedure are also discussed
- …
