22 research outputs found
Creating the ‘ethics industry': Mary Warnock, in vitro fertilization and the history of bioethics in Britain
Recent decades have seen a shift in the management and discussion of biomedicine. Issues once considered by doctors and scientists are now handled by a diverse array of participants, including philosophers, lawyers, theologians and lay representatives. This new approach, known as ‘bioethics', has become the norm in regulatory committees and public debate. In this article, I argue that bioethics emerged as a valued enterprise in Britain during the 1980s because it fulfilled, and linked, the concerns of several groups. My analysis centres on the moral philosopher Mary Warnock, who chaired a government inquiry into human fertilization and embryology between 1982 and 1984, and became a strong advocate of bioethics. I detail how Warnock's promotion of bioethics tallied with the Conservative government's desire for increased surveillance of hitherto autonomous professions – while fulfilling her own belief that philosophers should engage in public affairs. And I also show that Warnock simultaneously promoted bioethics to doctors and scientists as an essential safeguard against declining political and public trust. This stance, I argue, framed bioethics as a vital intermediary between politics, the public, and biomedicine, and explains the growth and endurance of what the Guardian identified as an ethics industry
Global Prediction of Tissue-Specific Gene Expression and Context-Dependent Gene Networks in Caenorhabditis elegans
Tissue-specific gene expression plays a fundamental role in metazoan biology and is an important aspect of many complex diseases. Nevertheless, an organism-wide map of tissue-specific expression remains elusive due to difficulty in obtaining these data experimentally. Here, we leveraged existing whole-animal Caenorhabditis elegans microarray data representing diverse conditions and developmental stages to generate accurate predictions of tissue-specific gene expression and experimentally validated these predictions. These patterns of tissue-specific expression are more accurate than existing high-throughput experimental studies for nearly all tissues; they also complement existing experiments by addressing tissue-specific expression present at particular developmental stages and in small tissues. We used these predictions to address several experimentally challenging questions, including the identification of tissue-specific transcriptional motifs and the discovery of potential miRNA regulation specific to particular tissues. We also investigate the role of tissue context in gene function through tissue-specific functional interaction networks. To our knowledge, this is the first study producing high-accuracy predictions of tissue-specific expression and interactions for a metazoan organism based on whole-animal data
Three principles for the progress of immersive technologies in healthcare training and education
Thiazolides promote apoptosis in colorectal tumor cells via MAP kinase-induced Bim and Puma activation
Cardioprotective effects of fatty acid amide hydrolase inhibitor URB694, in a rodent model of trait anxiety
Waste management in semi-urban areas of India: appropriate technological strategies to overcome financial barriers
A framework for understanding and targeting residual disease in oncogene-driven solid cancers
Molecular targeted therapy has the potential to dramatically improve cancer patient survival. However, complete and durable responses to targeted therapy are rare in advanced-stage solid cancer patients. Even the most effective targeted therapies generally do not induce a complete tumor response, resulting in residual disease and tumor progression that limits patient survival. We discuss the emerging need to more fully understand the molecular basis of residual disease as a prelude to designing principled therapeutic strategies to minimize or eliminate it so that we can move from temporary to chronic control or cure in advanced-stage solid cancer patients. Ultimately, we propose a shift from the current reactive paradigm of analyzing and treating acquired drug resistance to a pre-emptive paradigm of defining the mechanisms of residual disease in order to target and limit this disease reservoir
