26 research outputs found
A theoretical model of inflammation- and mechanotransduction- driven asthmatic airway remodelling
Inflammation, airway hyper-responsiveness and airway remodelling are well-established hallmarks of asthma, but their inter-relationships remain elusive. In order to obtain a better understanding of their inter-dependence, we develop a mechanochemical morphoelastic model of the airway wall accounting for local volume changes in airway smooth muscle (ASM) and extracellular matrix in response to transient inflammatory or contractile agonist challenges. We use constrained mixture theory, together with a multiplicative decomposition of growth from the elastic deformation, to model the airway wall as a nonlinear fibre-reinforced elastic cylinder. Local contractile agonist drives ASM cell contraction, generating mechanical stresses in the tissue that drive further release of mitogenic mediators and contractile agonists via underlying mechanotransductive signalling pathways. Our model predictions are consistent with previously described inflammation-induced remodelling within an axisymmetric airway geometry. Additionally, our simulations reveal novel mechanotransductive feedback by which hyper-responsive airways exhibit increased remodelling, for example, via stress-induced release of pro-mitogenic and procontractile cytokines. Simulation results also reveal emergence of a persistent contractile tone observed in asthmatics, via either a pathological mechanotransductive feedback loop, a failure to clear agonists from the tissue, or a combination of both. Furthermore, we identify various parameter combinations that may contribute to the existence of different asthma phenotypes, and we illustrate a combination of factors which may predispose severe asthmatics to fatal bronchospasms
A brief guide to polymerization terminology (IUPAC Technical Report)
The use of self-consistent terminology to describe polymerizations is important for litigation, patents, research and education. Imprecision in these areas can be both costly and confusing. To address this situation the International Union of Pure and Applied Chemistry (IUPAC) has made recommendations, which are summarized below. In the version shown as the supplementary material, references and hyperlinks lead to source documents; screen tips contain definitions published in IUPAC recommendations. More details can also be found in the IUPAC Purple Book. This guide is one of a series on terminology and nomenclature. Refer to the supplementary material for the complete and interactive version of this brief guide
Imaging of the urinary tract: the role of CT and MRI
Computed tomography (CT) and magnetic resonance imaging (MRI) are increasingly valuable tools for assessing the urinary tract in adults and children. However, their imaging capabilities, while overlapping in some respects, should be considered as complementary, as each technique offers specific advantages and disadvantages both in actual inherent qualities of the technique and in specific patients and with a specific diagnostic question. The use of CT and MRI should therefore be tailored to the patient and the clinical question. For the scope of this article, the advantages and disadvantages of these techniques in children will be considered; different considerations will apply in adult practice
Noninvasive estimation of tumour viability in a xenograft model of human neuroblastoma with proton magnetic resonance spectroscopy (1H MRS)
The aim of the study was to evaluate proton magnetic resonance spectroscopy (1H MRS) for noninvasive biological characterisation of neuroblastoma xenografts in vivo. For designing the experiments, human neuroblastoma xenografts growing subcutaneously in nude rats were analysed in vivo with 1H MRS and magnetic resonance imaging at 4.7 T. The effects of spontaneous tumour growth and antiangiogenesis treatment, respectively, on spectral characteristics were evaluated. The spectroscopic findings were compared to tumour morphology, proliferation and viable tumour tissue fraction. The results showed that signals from choline (Cho)-containing compounds and mobile lipids (MLs) dominated the spectra. The individual ML/Cho ratios for both treated and untreated tumours were positively correlated with tumour volume (P<0.05). There was an inverse correlation between the ML/Cho ratio and the viable tumour fraction (r=−0.86, P<0.001). Higher ML/Cho ratios concomitant with pronounced histological changes were seen in spectra from tumours treated with the antiangiogenic drug TNP-470, compared to untreated control tumours (P<0.05). In conclusion, the ML/Cho ratio obtained in vivo by 1H MRS enabled accurate assessment of the viable tumour fraction in a human neuroblastoma xenograft model. 1H MRS also revealed early metabolic effects of antiangiogenesis treatment. 1H MRS could prove useful as a tool to monitor experimental therapy in preclinical models of neuroblastoma, and possibly also in children
Molecular analysis of enrichment cultures of ammonia oxidizers from the Salar de Huasco, a high altitude saline wetland in northern Chile
We analyzed enrichment cultures of ammonia-oxidizing bacteria (AOB) collected from different areas of Salar de Huasco, a high altitude, saline, pH-neutral water body in the Chilean Altiplano. Samples were inoculated into mineral media with 10 mM NH4+ at five different salt concentrations (10, 200, 400, 800 and 1,400 mM NaCl). Low diversity (up to three phylotypes per enrichment) of beta-AOB was detected using 16S rDNA and amoA clone libraries. Growth of beta-AOB was only recorded in a few enrichment cultures and varied according to site or media salinity. In total, five 16S rDNA and amoA phylotypes were found which were related to Nitrosomonas europaea/Nitrosococcus mobilis, N. marina and N. communis clusters. Phylotype 1-16S was 97% similar with N. halophila, previously isolated from Mongolian soda lakes, and phylotypes from amoA sequences were similar with yet uncultured beta-AOB from different biofilms. Sequences related to N. halophila were frequently found at all salinities. Neither gamma-AOB nor ammonia-oxidizing Archaea were recorded in these enrichment cultures
Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment
The oxidation of ammonia plays a significant role in the transformation of fixed nitrogen in the global nitrogen cycle. Autotrophic ammonia oxidation is known in three groups of microorganisms. Aerobic ammonia-oxidizing bacteria and archaea convert ammonia into nitrite during nitrification. Anaerobic ammonia-oxidizing bacteria (anammox) oxidize ammonia using nitrite as electron acceptor and producing atmospheric dinitrogen. The isolation and cultivation of all three groups in the laboratory are quite problematic due to their slow growth rates, poor growth yields, unpredictable lag phases, and sensitivity to certain organic compounds. Culture-independent approaches have contributed importantly to our understanding of the diversity and distribution of these microorganisms in the environment. In this review, we present an overview of approaches that have been used for the molecular study of ammonia oxidizers and discuss their application in different environments
P3HT-Based Solar Cells: Structural Properties and Photovoltaic Performance
Each year we are bombarded with B.Sc. and Ph.D. applications from students that want to improve the world. They have learned that their future depends on changing the type of fuel we use and that solar energy is our future. The hope and energy of these young people will transform future energy technologies, but it will not happen quickly. Organic photovoltaic devices are easy to sketch, but the materials, processing steps, and ways of measuring the properties of the materials are very complicated. It is not trivial to make a systematic measurement that will change the way other research groups think or practice. In approaching this chapter, we thought about what a new researcher would need to know about organic photovoltaic devices and materials in order to have a good start in the subject. Then, we simplified that to focus on what a new researcher would need to know about poly-3-hexylthiophene:phenyl-C61-butyric acid methyl ester blends (P3HT: PCBM) to make research progress with these materials. This chapter is by no means authoritative or a compendium of all things on P3HT:PCBM. We have selected to explain how the sample fabrication techniques lead to control of morphology and structural features and how these morphological features have specific optical and electronic consequences for organic photovoltaic device applications
The Synthesis, Self-Assembly and Self-Organisation of Polysilane Block Copolymers
Block copolymers containing polysilane blocks are unique in that the polysilane components possess electro-active properties and are readily photodegradable. This review will discuss and assess the two major approaches to the synthesis of polysilane block copolymers via pre-formed polymer chain coupling and living polymerisation techniques. The self-organisation of polysilane block copolymers and the morphologies adopted in thin films are reviewed. Amphiphilic polysilane-containing block copolymers self-assemble in solvents selective for one block and a number of examples are highlighted. The versatility of these materials is highlighted by recent significant applications including the preparation of hollow crosslinked micellar aggregates in aqueous solutions and in patterned thin film generation subsequently employed as templates for the growth of cell cultures and CaCO (3.
Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer disease.
The numbers and distribution of the neurofibrillary tangles and neuritic plaques have been determined in several areas of the neocortex in brains affected by various degrees of severity of Alzheimer disease. The homotypical cortex of the "association" areas of the temporal, parietal, and frontal lobes are severely involved, whereas the motor, somatic sensory, and primary visual areas are virtually unaffected. The neurofibrillary tangles are mainly in the supra- and infragranular layers, particularly in layers III and V. In all areas except area 18 in the occipital lobe, there are approximately twice as many tangles in layer V as in layer III. The tangles are arranged in definite clusters, and those in the supra- and infragranular layers are in register. The neuritic plaques occur in all layers but predominantly affect layers II and III and do not show clustering. These data on the severity of the pathological involvement in different areas of the neocortex and the laminar distribution and the clustering of the tangles support the suggestion that the pathological changes in Alzheimer disease affect regions that are interconnected by well-defined groups of connections and that the disease process may extend along the connecting fibers. The invariable and severe involvement of the olfactory areas of the brain in this disease is in striking contrast to the minimal changes in the somatic sensory and primary visual areas and raises the possibility that the olfactory pathway may be initially involved
