9,370 research outputs found
D-brane Construction of the 5D NHEK Dual
Extremal but non-supersymmetric charged black holes with SU(2)_L spin in IIB
string theory compactified to five dimensions on K^3 x S^1 are considered.
These have a near-horizon or NHEK region with an enhanced SL(2,R)_L conformal
symmetry. It is shown that the NHEK geometry has a second, inequivalent,
asymptotically flat extension in which the radius of the S^1 becomes infinite
but the radius of the angular circles of SU(2)_L orbits approach a constant.
The asymptotic charges associated to the second solution identify it as a 5D
D1-D5-Taub-NUT black string with certain nonzero worldvolume charge densities,
temperatures and chemical potentials. The dual of the NHEK geometry is then
identified as an IR limit of this wrapped brane configuration.Comment: 11 page
Antibiotic-specific differences in the response of Staphylococcus aureus to treatment with antimicrobiala combined with manuka honey
Skin infections caused by antibiotic resistant Staphylococcus aureus are a significant health problem worldwide; often associated with high treatment cost and mortality rate. Complex natural products like New Zealand (NZ) manuka honey have been revisited and studied extensively as an alternative to antibiotics due to their potent broad-spectrum antimicrobial activity, and the inability to isolate honey-resistant S. aureus. Previous studies showing synergistic effects between manuka-type honeys and antibiotics have been demonstrated against the growth of one methicillin-resistant S. aureus (MRSA) strain. We have previously demonstrated strong synergistic activity between NZ manuka-type honey and rifampicin against growth and biofilm formation of multiple S. arueus strains. Here, we have expanded our investigation using multiple S. aureus strains and four different antibiotics commonly used to treat S. aureus-related skin infections: rifampicin, oxacillin, gentamicin, and clindamycin. Using checkerboard microdilution and agar diffusion assays with S. aureus strains including clinical isolates and MRSA we demonstrate that manuka-type honey combined with these four antibiotics frequently produces a synergistic effect. In some cases when synergism was not observed, there was a significant enhancement in antibiotic susceptibility. Some strains that were highly resistant to an antibiotic when present alone become sensitive to clinically achievable concentrations when combined with honey. However, not all of the S. aureus strains tested responded in the same way to these combinational treatments. Our findings support the use of NZ manuka-type honeys in clinical treatment against S. aureus-related infections and extend their potential use as an antibiotic adjuvant in combinational therapy. Our data also suggest that manuka-type honeys may not work as antibiotic adjuvants for all strains of S. aureus, and this may help determine the mechanistic processes behind honey synergy
Simulating quantum statistics with entangled photons: a continuous transition from bosons to fermions
In contrast to classical physics, quantum mechanics divides particles into
two classes-bosons and fermions-whose exchange statistics dictate the dynamics
of systems at a fundamental level. In two dimensions quasi-particles known as
'anyons' exhibit fractional exchange statistics intermediate between these two
classes. The ability to simulate and observe behaviour associated to
fundamentally different quantum particles is important for simulating complex
quantum systems. Here we use the symmetry and quantum correlations of entangled
photons subjected to multiple copies of a quantum process to directly simulate
quantum interference of fermions, bosons and a continuum of fractional
behaviour exhibited by anyons. We observe an average similarity of 93.6\pm0.2%
between an ideal model and experimental observation. The approach generalises
to an arbitrary number of particles and is independent of the statistics of the
particles used, indicating application with other quantum systems and large
scale application.Comment: 10 pages, 5 figure
On-the-fly decoding luminescence lifetimes in the microsecond region for lanthanide-encoded suspension arrays
Significant multiplexing capacity of optical time-domain coding has been recently demonstrated by tuning luminescence lifetimes of the upconversion nanoparticles called 'τ-Dots'. It provides a large dynamic range of lifetimes from microseconds to milliseconds, which allows creating large libraries of nanotags/microcarriers. However, a robust approach is required to rapidly and accurately measure the luminescence lifetimes from the relatively slow-decaying signals. Here we show a fast algorithm suitable for the microsecond region with precision closely approaching the theoretical limit and compatible with the rapid scanning cytometry technique.We exploit this approach to further extend optical time-domain multiplexing to the downconversion luminescence, using luminescence microspheres wherein lifetimes are tuned through luminescence resonance energy transfer.We demonstrate real-time discrimination of these microspheres in the rapid scanning cytometry, and apply them to the multiplexed probing of pathogen DNA strands. Our results indicate that tunable luminescence lifetimes have considerable potential in high-throughput analytical sciences. © 2014 Macmillan Publishers Limited. All rights reserved
Tracing Noble Gas Radionuclides in the Environment
Trace analysis of radionuclides is an essential and versatile tool in modern
science and technology. Due to their ideal geophysical and geochemical
properties, long-lived noble gas radionuclides, in particular, 39Ar (t1/2 = 269
yr), 81Kr (t1/2 = 2.3x10^5 yr) and 85Kr (t1/2 = 10.8 yr), have long been
recognized to have a wide range of important applications in Earth sciences. In
recent years, significant progress has been made in the development of
practical analytical methods, and has led to applications of these isotopes in
the hydrosphere (tracing the flow of groundwater and ocean water). In this
article, we introduce the applications of these isotopes and review three
leading analytical methods: Low-Level Counting (LLC), Accelerator Mass
Spectrometry (AMS) and Atom Trap Trace Analysis (ATTA)
A role for cell sex in stem cell-mediated skeletal muscle regeneration: Female cells have higher muscle regeneration efficiency
We have shown that muscle-derived stem cells (MDSCs) transplanted into dystrophic (mdx) mice efficiently regenerate skeletal muscle. However, MDSC populations exhibit heterogeneity in marker profiles and variability in regeneration abilities. We show here that cell sex is a variable that considerably influences MDSCs' regeneration abilities. We found that the female MDSCs (F-MDSCs) regenerated skeletal muscle more efficiently. Despite using additional isolation techniques and cell cloning, we could not obtain a male subfraction with a regeneration capacity similar to that of their female counterparts. Rather than being directly hormonal or caused by host immune response, this difference in MDSCs' regeneration potential may arise from innate sex-related differences in the cells' stress responses. In comparison with F-MDSCs, male MDSCs have increased differentiation after exposure to oxidative stress induced by hydrogen peroxide, which may lead to in vivo donor cell depletion, and a proliferative advantage for F-MDSCs that eventually increases muscle regeneration. These findings should persuade researchers to report cell sex, which is a largely unexplored variable, and consider the implications of relying on cells of one sex. © The Rockefeller University Press
Near Horizon of 5D Rotating Black Holes from 2D Perspective
We study the CFT dual to five dimensional extremal rotating black holes, by
investigating the two dimensional perspective of their near horizon geometry.
From two dimensional point of view, we show that both gauge fields, related to
the two rotations, appear in the same manner in the asymptotic symmetry and in
the associated central charge. We find that, our results are in perfect
agreement with the generalization of Kerr/CFT approach to five dimensional
extremal rotating black holes.Comment: The last version to appear in the European Physical Journal
Can disordered mobile phone use be considered a behavioral addiction? An update on current evidence and a comprehensive model for future research
Despite the many positive outcomes, excessive mobile phone use is now often associated with potentially harmful and/or disturbing behaviors (e.g., symptoms of deregulated use, negative impact on various aspects of daily life such as relationship problems, and work intrusion). Problematic mobile phone use (PMPU) has generally been considered as a behavioral addiction that shares many features with more established drug addictions. In light of the most recent data, the current paper reviews the validity of the behavioral addiction model when applied to PMPU. On the whole, it is argued that the evidence supporting PMPU as an addictive behavior is scarce. In particular, it lacks studies that definitively show behavioral and neurobiological similarities between mobile phone addiction and other types of legitimate addictive behaviors. Given this context, an integrative pathway model is proposed that aims to provide a theoretical framework to guide future research in the field of PMPU. This model highlights that PMPU is a heterogeneous and multi-faceted condition
The phylogenetically-related pattern recognition receptors EFR and XA21 recruit similar immune signaling components in monocots and dicots
During plant immunity, surface-localized pattern recognition receptors (PRRs) recognize pathogen-associated molecular patterns (PAMPs). The transfer of PRRs between plant species is a promising strategy for engineering broad-spectrum disease resistance. Thus, there is a great interest in understanding the mechanisms of PRR-mediated resistance across different plant species. Two well-characterized plant PRRs are the leucine-rich repeat receptor kinases (LRR-RKs) EFR and XA21 from Arabidopsis thaliana (Arabidopsis) and rice, respectively. Interestingly, despite being evolutionary distant, EFR and XA21 are phylogenetically closely related and are both members of the sub-family XII of LRR-RKs that contains numerous potential PRRs. Here, we compared the ability of these related PRRs to engage immune signaling across the monocots-dicots taxonomic divide. Using chimera between Arabidopsis EFR and rice XA21, we show that the kinase domain of the rice XA21 is functional in triggering elf18-induced signaling and quantitative immunity to the bacteria Pseudomonas syringae pv. tomato (Pto) DC3000 and Agrobacterium tumefaciens in Arabidopsis. Furthermore, the EFR:XA21 chimera associates dynamically in a ligand-dependent manner with known components of the EFR complex. Conversely, EFR associates with Arabidopsis orthologues of rice XA21-interacting proteins, which appear to be involved in EFR-mediated signaling and immunity in Arabidopsis. Our work indicates the overall functional conservation of immune components acting downstream of distinct LRR-RK-type PRRs between monocots and dicots
Phase structure of black branes in grand canonical ensemble
This is a companion paper of our previous work [1] where we studied the
thermodynamics and phase structure of asymptotically flat black -branes in a
cavity in arbitrary dimensions in a canonical ensemble. In this work we
study the thermodynamics and phase structure of the same in a grand canonical
ensemble. Since the boundary data in two cases are different (for the grand
canonical ensemble boundary potential is fixed instead of the charge as in
canonical ensemble) the stability analysis and the phase structure in the two
cases are quite different. In particular, we find that there exists an analog
of one-variable analysis as in canonical ensemble, which gives the same
stability condition as the rather complicated known (but generalized from black
holes to the present case) two-variable analysis. When certain condition for
the fixed potential is satisfied, the phase structure of charged black
-branes is in some sense similar to that of the zero charge black -branes
in canonical ensemble up to a certain temperature. The new feature in the
present case is that above this temperature, unlike the zero-charge case, the
stable brane phase no longer exists and `hot flat space' is the stable phase
here. In the grand canonical ensemble there is an analog of Hawking-Page
transition, even for the charged black -brane, as opposed to the canonical
ensemble. Our study applies to non-dilatonic as well as dilatonic black
-branes in space-time dimensions.Comment: 32 pages, 2 figures, various points refined, discussion expanded,
references updated, typos corrected, published in JHEP 1105:091,201
- …
