204 research outputs found
Problematic mobile phone use and smartphone addiction across generations: the roles of psychopathological symptoms and smartphone use
Contemporary technological advances have led to a significant increase in using mobile technologies. Recent research has pointed to potential problems as a consequence of mobile overuse, including addiction, financial problems, dangerous use (i.e. whilst driving) and prohibited use (i.e. use in forbidden areas). The aim of this study is to extend previous findings regarding the predictive power of psychopathological symptoms (depression, anxiety and stress), mobile phone use (i.e. calls, SMS, time spent on the phone, as well as the engagement in specific smartphone activities) across Generations X and Y on problematic mobile phone use in a sample of 273 adults. Findings revealed prohibited use and dependence were predicted by calls/day, time on the phone and using social media. Only for dependent mobile phone use (rather than prohibited), stress appeared as significant. Using social media and anxiety significantly predicted belonging to Generation Y, with calls per day predicted belonging to Generation X. This finding suggests Generation Y are more likely to use asynchronous social media-based communication, whereas Generation X engage more in synchronous communication. The findings have implications for prevention and awareness-raising efforts of possibly problematic mobile phone use for educators, parents and individuals, particularly including dependence and prohibited use
In Caenorhabditis elegans Nanoparticle-Bio-Interactions Become Transparent: Silica-Nanoparticles Induce Reproductive Senescence
While expectations and applications of nanotechnologies grow exponentially, little is known about interactions of engineered nanoparticles with multicellular organisms. Here we propose the transparent roundworm Caenorhabditis elegans as a simple but anatomically and biologically well defined animal model that allows for whole organism analyses of nanoparticle-bio-interactions. Microscopic techniques showed that fluorescently labelled nanoparticles are efficiently taken up by the worms during feeding, and translocate to primary organs such as epithelial cells of the intestine, as well as secondary organs belonging to the reproductive tract. The life span of nanoparticle-fed Caenorhabditis elegans remained unchanged, whereas a reduction of progeny production was observed in silica-nanoparticle exposed worms versus untreated controls. This reduction was accompanied by a significant increase of the ‘bag of worms’ phenotype that is characterized by failed egg-laying and usually occurs in aged wild type worms. Experimental exclusion of developmental defects suggests that silica-nanoparticles induce an age-related degeneration of reproductive organs, and thus set a research platform for both, detailed elucidation of molecular mechanisms and high throughput screening of different nanomaterials by analyses of progeny production
Zinc ferrite nanoparticle-induced cytotoxicity and oxidative stress in different human cells
Molecular evolution of vertebrate sex-determining genes
Y-linked Dmy (also called dmrt1bY) in the teleost fish medaka, W-linked Dm-W in the African clawed frog (Xenopus laevis), and Z-linked Dmrt1 in the chicken are all sex chromosome-linked Dmrt1 homologues required for sex determination. Dmy and Dm-W both are Dmrt1 palalogues evolved through Dmrt1 duplication, while chicken Dmrt1 is a Z-linked orthologue. The eutherian sex-determining gene, Sry, evolved from an allelic gene, Sox3. Here we analyzed the exon–intron structures of the Dmrt1 homologues of several vertebrate species through information from databases and by determining the transcription initiation sites in medaka, chicken, Xenopus, and mouse. Interestingly, medaka Dmrt1 and Dmy and Xenopus Dm-W and Dmrt1 have a noncoding-type first exon, while mouse and chicken Dmrt1 do not. We next compared the 5′-flanking sequences of the Dmrt1 noncoding and coding exons 1 of several vertebrate species and found conservation of the presumptive binding sites for some transcription factors. Importantly, based on the phylogenetic trees for Dmrt1 and Sox3 homologues, it was implied that the sex-determining gene Dmy, Dm-W, and Sry have a higher substitution rate than thier prototype genes. Finally, we discuss the evolutionary relationships between vertebrate sex chromosomes and the sex-determining genes Dmy/Dm-W and Sry, which evolved by neofunctionalization of Dmrt1 and Sox3, respectively, for sex determining function. We propose a coevolution model of sex determining gene and sex chromosome, in which undifferentiated sex chromosomes easily allow replacement of a sex-determining gene with another new one, while specialized sex chromosomes are restricted a particular sex-determining gene
Concentration-Dependent, Size-Independent Toxicity of Citrate Capped AuNPs in Drosophila melanogaster
The expected potential benefits promised by nanotechnology in various fields have led to a rapid increase of the presence of engineered nanomaterials in a high number of commercial goods. This is generating increasing questions about possible risks for human health and environment, due to the lack of an in-depth assessment of the physical/chemical factors responsible for their toxic effects. In this work, we evaluated the toxicity of monodisperse citrate-capped gold nanoparticles (AuNPs) of different sizes (5, 15, 40, and 80 nm) in the model organism Drosophila melanogaster, upon ingestion. To properly evaluate and distinguish the possible dose- and/or size-dependent toxicity of the AuNPs, we performed a thorough assessment of their biological effects, using two different dose-metrics. In the first approach, we kept constant the total surface area of the differently sized AuNPs (Total Exposed Surface area approach, TES), while, in the second approach, we used the same number concentration of the four different sizes of AuNPs (Total Number of Nanoparticles approach, TNN). We observed a significant AuNPs-induced toxicity in vivo, namely a strong reduction of Drosophila lifespan and fertility performance, presence of DNA fragmentation, as well as a significant modification in the expression levels of genes involved in stress responses, DNA damage recognition and apoptosis pathway. Interestingly, we found that, within the investigated experimental conditions, the toxic effects in the exposed organisms were directly related to the concentration of the AuNPs administered, irrespective of their size
Male-Mediated Gene Flow in Patrilocal Primates
BACKGROUND: Many group-living species display strong sex biases in dispersal tendencies. However, gene flow mediated by apparently philopatric sex may still occur and potentially alters population structure. In our closest living evolutionary relatives, dispersal of adult males seems to be precluded by high levels of territoriality between males of different groups in chimpanzees, and has only been observed once in bonobos. Still, male-mediated gene flow might occur through rare events such as extra-group matings leading to extra-group paternity (EGP) and female secondary dispersal with offspring, but the extent of this gene flow has not yet been assessed. METHODOLOGY/PRINCIPAL FINDINGS: Using autosomal microsatellite genotyping of samples from multiple groups of wild western chimpanzees (Pan troglodytes verus) and bonobos (Pan paniscus), we found low genetic differentiation among groups for both males and females. Characterization of Y-chromosome microsatellites revealed levels of genetic differentiation between groups in bonobos almost as high as those reported previously in eastern chimpanzees, but lower levels of differentiation in western chimpanzees. By using simulations to evaluate the patterns of Y-chromosomal variation expected under realistic assumptions of group size, mutation rate and reproductive skew, we demonstrate that the observed presence of multiple and highly divergent Y-haplotypes within western chimpanzee and bonobo groups is best explained by successful male-mediated gene flow. CONCLUSIONS/SIGNIFICANCE: The similarity of inferred rates of male-mediated gene flow and published rates of EGP in western chimpanzees suggests this is the most likely mechanism of male-mediated gene flow in this subspecies. In bonobos more data are needed to refine the estimated rate of gene flow. Our findings suggest that dispersal patterns in these closely related species, and particularly for the chimpanzee subspecies, are more variable than previously appreciated. This is consistent with growing recognition of extensive behavioral variation in chimpanzees and bonobos
RECAPP-XPR: A smartphone application for presenting and recalling experimentally controlled stimuli over longer timescales
We report two experiments that used smartphone applications for presenting and recalling verbal stimuli over extended timescales. In Experiment 1, we used an iPhone application that we had developed, called RECAPP-XPR, to present 76 participants with a single list of eight words presented at a rate of one word every hour, followed by a test of free recall an hour later. The experiment was exceptionally easy to schedule, taking only between 5 and 10 min to set up using a web-based interface. RECAPP-XPR randomly samples the stimuli, presents the stimuli, and collects the free recall data. The stimuli disappear shortly after they have been presented, and RECAPP-XPR collects data on when each stimulus was viewed. In Experiment 2, the study was replicated using the widely used image-sharing application Snapchat. A total of 197 participants were tested by 38 student experimenters, who manually presented the stimuli as “snaps” of experimentally controlled stimuli using the same experimental rates that had been used in Experiment 1. Like all snaps, these stimuli disappeared from view after a very short interval. In both experiments, we observed significant recall advantages for the first and last list items (primacy and recency effects, respectively), and there were clear tendencies to make more transitions at output between near-neighboring items, with a forward-ordered bias, consistent with temporal contiguity effects. The respective advantages and disadvantages of RECAPP-XPR and Snapchat as experimental software packages are discussed, as is the relationship between single-study-list smartphone experiments and long-term recency studies of real-world events
Systematic Review of Potential Health Risks Posed by Pharmaceutical, Occupational and Consumer Exposures to Metallic and Nanoscale Aluminum, Aluminum Oxides, Aluminum Hydroxide and Its Soluble Salts
Aluminum (Al) is a ubiquitous substance encountered both naturally (as the third most abundant element) and intentionally (used in water, foods, pharmaceuticals, and vaccines); it is also present in ambient and occupational airborne particulates. Existing data underscore the importance of Al physical and chemical forms in relation to its uptake, accumulation, and systemic bioavailability. The present review represents a systematic examination of the peer-reviewed literature on the adverse health effects of Al materials published since a previous critical evaluation compiled by Krewski et al. (2007).
Challenges encountered in carrying out the present review reflected the experimental use of different physical and chemical Al forms, different routes of administration, and different target organs in relation to the magnitude, frequency, and duration of exposure. Wide variations in diet can result in Al intakes that are often higher than the World Health Organization provisional tolerable weekly intake (PTWI), which is based on studies with Al citrate. Comparing daily dietary Al exposures on the basis of “total Al”assumes that gastrointestinal bioavailability for all dietary Al forms is equivalent to that for Al citrate, an approach that requires validation. Current occupational exposure limits (OELs) for identical Al substances vary as much as 15-fold.
The toxicity of different Al forms depends in large measure on their physical behavior and relative solubility in water. The toxicity of soluble Al forms depends upon the delivered dose of Al+ 3 to target tissues. Trivalent Al reacts with water to produce bidentate superoxide coordination spheres [Al(O2)(H2O4)+ 2 and Al(H2O)6 + 3] that after complexation with O2•−, generate Al superoxides [Al(O2•)](H2O5)]+ 2. Semireduced AlO2• radicals deplete mitochondrial Fe and promote generation of H2O2, O2 • − and OH•. Thus, it is the Al+ 3-induced formation of oxygen radicals that accounts for the oxidative damage that leads to intrinsic apoptosis. In contrast, the toxicity of the insoluble Al oxides depends primarily on their behavior as particulates.
Aluminum has been held responsible for human morbidity and mortality, but there is no consistent and convincing evidence to associate the Al found in food and drinking water at the doses and chemical forms presently consumed by people living in North America and Western Europe with increased risk for Alzheimer\u27s disease (AD). Neither is there clear evidence to show use of Al-containing underarm antiperspirants or cosmetics increases the risk of AD or breast cancer. Metallic Al, its oxides, and common Al salts have not been shown to be either genotoxic or carcinogenic. Aluminum exposures during neonatal and pediatric parenteral nutrition (PN) can impair bone mineralization and delay neurological development. Adverse effects to vaccines with Al adjuvants have occurred; however, recent controlled trials found that the immunologic response to certain vaccines with Al adjuvants was no greater, and in some cases less than, that after identical vaccination without Al adjuvants.
The scientific literature on the adverse health effects of Al is extensive. Health risk assessments for Al must take into account individual co-factors (e.g., age, renal function, diet, gastric pH). Conclusions from the current review point to the need for refinement of the PTWI, reduction of Al contamination in PN solutions, justification for routine addition of Al to vaccines, and harmonization of OELs for Al substances
Rethinking the extrinsic incubation period of malaria parasites
The time it takes for malaria parasites to develop within a mosquito, and become transmissible, is known as the extrinsic incubation period, or EIP. EIP is a key parameter influencing transmission intensity as it combines with mosquito mortality rate and competence to determine the number of mosquitoes that ultimately become infectious. In spite of its epidemiological significance, data on EIP are scant. Current approaches to estimate EIP are largely based on temperature-dependent models developed from data collected on parasite development within a single mosquito species in the 1930s. These models assume that the only factor affecting EIP is mean environmental temperature. Here, we review evidence to suggest that in addition to mean temperature, EIP is likely influenced by genetic diversity of the vector, diversity of the parasite, and variation in a range of biotic and abiotic factors that affect mosquito condition. We further demonstrate that the classic approach of measuring EIP as the time at which mosquitoes first become infectious likely misrepresents EIP for a mosquito population. We argue for a better understanding of EIP to improve models of transmission, refine predictions of the possible impacts of climate change, and determine the potential evolutionary responses of malaria parasites to current and future mosquito control tools
- …
