1,777 research outputs found

    Molecular characterization and in silico expression analysis of a chalcone synthase gene family in Sorghum bicolor

    Get PDF
    Recent use of Sorghum bicolor as a target for grass genomics has presented new resources for gene discovery in novel metabolic pathways in Poaceae. Sorghum synthesizes a unique class of flavonoid phytoalexins, the 3-deoxyanthocyanidins, in response to fungal infection. The biosynthetic pathways for 3-deoxyflavonoids are largely uncharacterized but are known to involve transcriptional activation of chalcone synthase (CHS). CHS, or naringenin CHS, catalyses the formation of naringenin, the precursor for different flavonoids. We have isolated seven sorghum CHS genes, CHS1-7, from a genomic library on high-density filters. CHS1-7 are highly conserved and closely related to the maize C2 and Whp genes. Several of them are also linked in the genome. These findings suggest that they are the result of recent gene duplication events. Expression of the individual CHS genes was studied in silico by examination of expressed sequence tag (EST) data available in the public domain. Our analyses suggested that CHS1-7 were not differentially expressed in the various growth and developmental conditions represented by the cDNA libraries used to generate the EST data. However, we identified a CHS-like gene, CHS8, with significantly higher EST abundance in the pathogen-induced library. CHS8 shows only 81-82% identity to CHS1-7 and forms a distinct subgroup in our phylogenetic analysis. In addition, the active site region contains substitutions that distinguish CHS8 from naringenin CHS. We propose that CHS8 has evolved new enzymatic functions that are involved in the synthesis of defence-related flavonoids, such as the 3-deoxyanthocyanidins, during fungal infection. © 2002 Elsevier Science Ltd. All rights reserved.postprin

    Exploration of a potent PI3 kinase/mTOR inhibitor as a novel anti-fibrotic agent in IPF

    Get PDF
    © 2016 BMJ Publishing Group Ltd & British Thoracic Society.Rationale Idiopathic pulmonary fibrosis (IPF) is the most rapidly progressive and fatal of all fibrotic conditions with no curative therapies. Common pathomechanisms between IPF and cancer are increasingly recognised, including dysfunctional pan-PI3 kinase (PI3K) signalling as a driver of aberrant proliferative responses. GSK2126458 is a novel, potent, PI3K/mammalian target of rapamycin (mTOR) inhibitor which has recently completed phase I trials in the oncology setting. Our aim was to establish a scientific and dosing framework for PI3K inhibition with this agent in IPF at a clinically developable dose. Methods We explored evidence for pathway signalling in IPF lung tissue and examined the potency of GSK2126458 in fibroblast functional assays and precision-cut IPF lung tissue. We further explored the potential of IPF patient-derived bronchoalveolar lavage (BAL) cells to serve as pharmacodynamic biosensors to monitor GSK2126458 target engagement within the lung. Results We provide evidence for PI3K pathway activation in fibrotic foci, the cardinal lesions in IPF. GSK2126458 inhibited PI3K signalling and functional responses in IPF-derived lung fibroblasts, inhibiting Akt phosphorylation in IPF lung tissue and BAL derived cells with comparable potency. Integration of these data with GSK2126458 pharmacokinetic data from clinical trials in cancer enabled modelling of an optimal dosing regimen for patients with IPF. Conclusions Our data define PI3K as a promising therapeutic target in IPF and provide a scientific and dosing framework for progressing GSK2126458 to clinical testing in this disease setting. A proof-ofmechanism trial of this agent is currently underway. Trial registration number NCT01725139, pre-clinical

    Development of an invasively monitored porcine model of acetaminophen-induced acute liver failure

    Get PDF
    Background: The development of effective therapies for acute liver failure (ALF) is limited by our knowledge of the pathophysiology of this condition, and the lack of suitable large animal models of acetaminophen toxicity. Our aim was to develop a reproducible invasively-monitored porcine model of acetaminophen-induced ALF. Method: 35kg pigs were maintained under general anaesthesia and invasively monitored. Control pigs received a saline infusion, whereas ALF pigs received acetaminophen intravenously for 12 hours to maintain blood concentrations between 200-300 mg/l. Animals surviving 28 hours were euthanased. Results: Cytochrome p450 levels in phenobarbital pre-treated animals were significantly higher than non pre-treated animals (300 vs 100 pmol/mg protein). Control pigs (n=4) survived 28-hour anaesthesia without incident. Of nine pigs that received acetaminophen, four survived 20 hours and two survived 28 hours. Injured animals developed hypotension (mean arterial pressure; 40.8+/-5.9 vs 59+/-2.0 mmHg), increased cardiac output (7.26+/-1.86 vs 3.30+/-0.40 l/min) and decreased systemic vascular resistance (8.48+/-2.75 vs 16.2+/-1.76 mPa/s/m3). Dyspnoea developed as liver injury progressed and the increased pulmonary vascular resistance (636+/-95 vs 301+/-26.9 mPa/s/m3) observed may reflect the development of respiratory distress syndrome. Liver damage was confirmed by deterioration in pH (7.23+/-0.05 vs 7.45+/-0.02) and prothrombin time (36+/-2 vs 8.9+/-0.3 seconds) compared with controls. Factor V and VII levels were reduced to 9.3 and 15.5% of starting values in injured animals. A marked increase in serum AST (471.5+/-210 vs 42+/-8.14) coincided with a marked reduction in serum albumin (11.5+/-1.71 vs 25+/-1 g/dL) in injured animals. Animals displayed evidence of renal impairment; mean creatinine levels 280.2+/-36.5 vs 131.6+/-9.33 mumol/l. Liver histology revealed evidence of severe centrilobular necrosis with coagulative necrosis. Marked renal tubular necrosis was also seen. Methaemoglobin levels did not rise >5%. Intracranial hypertension was not seen (ICP monitoring), but there was biochemical evidence of encephalopathy by the reduction of Fischer's ratio from 5.6 +/- 1.1 to 0.45 +/- 0.06. Conclusion: We have developed a reproducible large animal model of acetaminophen-induced liver failure, which allows in-depth investigation of the pathophysiological basis of this condition. Furthermore, this represents an important large animal model for testing artificial liver support systems

    Analytic philosophy for biomedical research: the imperative of applying yesterday's timeless messages to today's impasses

    Get PDF
    The mantra that "the best way to predict the future is to invent it" (attributed to the computer scientist Alan Kay) exemplifies some of the expectations from the technical and innovative sides of biomedical research at present. However, for technical advancements to make real impacts both on patient health and genuine scientific understanding, quite a number of lingering challenges facing the entire spectrum from protein biology all the way to randomized controlled trials should start to be overcome. The proposal in this chapter is that philosophy is essential in this process. By reviewing select examples from the history of science and philosophy, disciplines which were indistinguishable until the mid-nineteenth century, I argue that progress toward the many impasses in biomedicine can be achieved by emphasizing theoretical work (in the true sense of the word 'theory') as a vital foundation for experimental biology. Furthermore, a philosophical biology program that could provide a framework for theoretical investigations is outlined

    The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family

    Get PDF
    The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) enzymes are secreted, multi-domain matrix-associated zinc metalloendopeptidases that have diverse roles in tissue morphogenesis and patho-physiological remodeling, in inflammation and in vascular biology. The human family includes 19 members that can be sub-grouped on the basis of their known substrates, namely the aggrecanases or proteoglycanases (ADAMTS1, 4, 5, 8, 9, 15 and 20), the procollagen N-propeptidases (ADAMTS2, 3 and 14), the cartilage oligomeric matrix protein-cleaving enzymes (ADAMTS7 and 12), the von-Willebrand Factor proteinase (ADAMTS13) and a group of orphan enzymes (ADAMTS6, 10, 16, 17, 18 and 19). Control of the structure and function of the extracellular matrix (ECM) is a central theme of the biology of the ADAMTS, as exemplified by the actions of the procollagen-N-propeptidases in collagen fibril assembly and of the aggrecanases in the cleavage or modification of ECM proteoglycans. Defects in certain family members give rise to inherited genetic disorders, while the aberrant expression or function of others is associated with arthritis, cancer and cardiovascular disease. In particular, ADAMTS4 and 5 have emerged as therapeutic targets in arthritis. Multiple ADAMTSs from different sub-groupings exert either positive or negative effects on tumorigenesis and metastasis, with both metalloproteinase-dependent and -independent actions known to occur. The basic ADAMTS structure comprises a metalloproteinase catalytic domain and a carboxy-terminal ancillary domain, the latter determining substrate specificity and the localization of the protease and its interaction partners; ancillary domains probably also have independent biological functions. Focusing primarily on the aggrecanases and proteoglycanases, this review provides a perspective on the evolution of the ADAMTS family, their links with developmental and disease mechanisms, and key questions for the future

    SPUTNIK: an R package for filtering of spatially related peaks in mass spectrometry imaging data

    Get PDF
    Summary: SPUTNIK is an R package consisting of a series of tools to filter mass spectrometry imaging peaks characterized by a noisy or unlikely spatial distribution. SPUTNIK can produce mass spectrometry imaging datasets characterized by a smaller but more informative set of peaks, reduce the complexity of subsequent multi-variate analysis and increase the interpretability of the statistical results. Availability: SPUTNIK is freely available online from CRAN repository and at https://github.com/paoloinglese/SPUTNIK. The package is distributed under the GNU General Public License version 3 and is accompanied by example files and data. Supplementary information: Supplementary data are available at Bioinformatics online

    Dental calculus evidence of Taï Forest Chimpanzee plant consumption and life history transitions

    Get PDF
    Dental calculus (calcified dental plaque) is a source of multiple types of data on life history. Recent research has targeted the plant microremains preserved in this mineralised deposit as a source of dietary and health information for recent and past populations. However, it is unclear to what extent we can interpret behaviour from microremains. Few studies to date have directly compared the microremain record from dental calculus to dietary records, and none with long-term observation dietary records, thus limiting how we can interpret diet, food acquisition and behaviour. Here we present a high-resolution analysis of calculus microremains from wild chimpanzees (Pan troglodytes verus) of Taï National Park, Côte d"Ivoire. We test microremain assemblages against more tan two decades of field behavioural observations to establish the ability of calculus to capture the composition of diet. Our results show that some microremain classes accumulate as long-lived dietary markers. Phytolith abundance in calculus can reflect the proportions of plants in the diet, yet this pattern is not true for starches. We also report microremains can record information about other dietary behaviours, such as the age of weaning and learned food processing techniques like nutcracking

    Motion in the north Iceland volcanic rift zone accommodated by bookshelf faulting

    Get PDF
    Along mid-ocean ridges the extending crust is segmented1 on length scales of 10–1,000 km. Where rift segments are offset from one another, motion between segments is accommodated by transform faults that are oriented orthogonally to the main rift axis. Where segments overlap, non-transform offsets with a variety of geometries2 accommodate shear motions. Here we use micro-seismic data to analyse the geometries of faults at two overlapping rift segments exposed on land in north Iceland. Between the rift segments, we identify a series of faults that are aligned sub-parallel to the orientation of the main rift. These faults slip through left-lateral strike-slip motion. Yet, movement between the overlapping rift segments is through right-lateral motion. Together, these motions induce a clockwise rotation of the faults and intervening crustal blocks in a motion that is consistent with a bookshelf-faulting mechanism, named after its resemblance to a tilting row of books on a shelf3. The faults probably reactivated existing crustal weaknesses, such as dyke intrusions, that were originally oriented parallel to the main rift and have since rotated about 15° clockwise. Reactivation of pre-existing, rift-parallel weaknesses contrasts with typical mid-ocean ridge transform faults and is an important illustration of a non-transform offset accommodating shear motion between overlapping rift segments

    Propionate has protective and anti-inflammatory effects on the blood–brain barrier

    Get PDF
    Production of short-chain fatty acids (SCFAs) from dietary substrates by the gut microbiota is associated with health, with these metabolites influencing the host via the ‘gut–brain axis’. Micromolar quantities of microbially derived SCFAs are taken up from the gut and reach systemic circulation, where they can influence host gene expression through a variety of largely unknown mechanisms. The blood–brain barrier (BBB) is the major interface between the circulation and central nervous system, and is critically involved in the pathogenesis of neuroinflammatory disorders such as stroke and vascular dementia. We hypothesized exposure of the BBB to SCFAs influences barrier integrity and function. To test our hypothesis, we investigated the in vitro effects of a physiologically relevant concentration (1 μM) of propionate upon the human immortalised cerebromicrovascular endothelial cell line hCMEC/D3. Propionate is produced by the microbiota from dietary glucans, and is biologically active via the G protein coupled receptors FFAR2 and FFAR3. It is a highly potent FFAR2 agonist (agonist activity 3.99) and has close to optimal ligand efficiency (-ΔG=1.19 kcal mol-1 atom-1) for this receptor. Notably, FFAR3 is expressed on the vascular endothelium and a likely target for propionate in the BBB. After confirming the presence of FFAR3 on hCMEC/D3 cells, we undertook an unbiased transcriptomic analysis of confluent hCMEC/D3 monolayers treated or not for 24 h with 1 μM propionate, supported by in vitro validation of key findings and assessment of functional endothelial permeability barrier properties. Propionate treatment had a significant (PFDR < 0.1) effect on the expression of 1136 genes: 553 upregulated, 583 downregulated. Propionate inhibited several inflammation-associated pathways: namely, TLR-specific signalling, NFkappaB signalling, and cytosolic DNA-sensing. Functional validation of these findings confirmed the down-regulation of TLR signalling by propionate, achieved primarily through down-regulation of endothelial CD14 expression. Accordingly, propionate prevented LPS-induced increases in paracellular permeability to 70 kDa FITC-dextran and loss of transendothelial electrical resistance. Enrichr analysis indicated the activation by propionate of the NFE2L2 (NRF2)-driven protective response against oxidative stress. Confirming these data, propionate limited free reactive oxygen species induction by the mitochondrial respiratory inhibitor rotenone. Together, these data strongly suggest the SCFA propionate contributes to maintaining BBB integrity and protecting against inflammatory challenge by downregulating BBB responsiveness. In addition to its well-described effects on cholesterol metabolism, maintenance of propionate levels in the circulation may be an additional mechanism whereby a glucan-containing diet protects against neurovascular disease
    corecore