51 research outputs found
Neuronal circuitry for pain processing in the dorsal horn
Neurons in the spinal dorsal horn process sensory information, which is then transmitted to several brain regions, including those responsible for pain perception. The dorsal horn provides numerous potential targets for the development of novel analgesics and is thought to undergo changes that contribute to the exaggerated pain felt after nerve injury and inflammation. Despite its obvious importance, we still know little about the neuronal circuits that process sensory information, mainly because of the heterogeneity of the various neuronal components that make up these circuits. Recent studies have begun to shed light on the neuronal organization and circuitry of this complex region
Synaptic Connections of the Neurokinin 1 Receptor-Like Immunoreactive Neurons in the Rat Medullary Dorsal Horn
The synaptic connections between neurokinin 1 (NK1) receptor-like immunoreactive (LI) neurons and γ-aminobutyric acid (GABA)-, glycine (Gly)-, serotonin (5-HT)- or dopamine-β-hydroxylase (DBH, a specific marker for norepinephrinergic neuronal structures)-LI axon terminals in the rat medullary dorsal horn (MDH) were examined under electron microscope by using a pre-embedding immunohistochemical double-staining technique. NK1 receptor-LI neurons were observed principally in laminae I and III, only a few of them were found in lamina II of the MDH. GABA-, Gly-, 5-HT-, or DBH-LI axon terminals were densely encountered in laminae I and II, and sparsely in lamina III of the MDH. Some of these GABA-, Gly-, 5-HT-, or DBH-LI axon terminals were observed to make principally symmetric synapses with NK1 receptor-LI neuronal cell bodies and dendritic processes in laminae I, II and III of the MDH. The present results suggest that neurons expressing NK1 receptor within the MDH might be modulated by GABAergic and glycinergic inhibitory intrinsic neurons located in the MDH and 5-HT- or norepinephrine (NE)-containing descending fibers originated from structures in the brainstem
Determining Mammosphere-Forming Potential: Application of the Limiting Dilution Analysis
Developmental signaling pathways regulating mammary stem cells and contributing to the etiology of triple-negative breast cancer
An immunocytochemical study of glycine receptor and GABA in laminae I- III of rat spinal dorsal horn
In order to provide information about the function of glycine in the superficial three laminae of the rat dorsal horn and the possible coexistence of glycine and GABA at synapses in this region, we have carried out a combined study involving preembedding immunocytochemistry with a monoclonal antibody to the glycine receptor and postembedding immunocytochemistry with antiserum to fixed GABA. Glycine receptor-like immunoreactivity was present at axodendritic and axosomatic synapses in all three laminae, and at dendrodendritic synapses in lamina II. Although axons that formed axoaxonic synapses were often presynaptic at immunoreactive axodendritic synapses (and thus probably contained glycine), the axoaxonic synapses themselves did not show glycine receptor-like immunoreactivity. Many of the profiles that were presynaptic at glycine receptor-immunoreactive synapses showed GABA- like immunoreactivity. These results suggest that glycine acts as a postsynaptic inhibitory transmitter at various types of synapses in laminae I-III, and that it may coexist with GABA at many synapses in this region. However, it appears that while glycine and GABA may both be released at axoaxonic synapses, either glycine does not act as a transmitter at these synapses, or else it acts at an atypical receptor that was not recognized by the antibody used in this study.</jats:p
Do central terminals of intact myelinated primary afferents sprout into the superficial dorsal horn of rat spinal cord after injury to a neighboring peripheral nerve?
Evidence against cholera toxin B subunit as a reliable tracer for sprouting of primary afferents following peripheral nerve injury
A quantitative and morphological study of projection neurons in lamina I of the rat lumbar spinal cord
- …
