91 research outputs found

    Exploring the immune microenvironment in small bowel adenocarcinoma using digital image analysis.

    Get PDF
    BACKGROUND: Small bowel adenocarcinoma (SBA) is a rare malignancy of the small intestine associated with late stage diagnosis and poor survival outcome. High expression of immune cells and immune checkpoint biomarkers especially programmed cell death ligand-1 (PD-L1) have been shown to significantly impact disease progression. We have analysed the expression of a subset of immune cell and immune checkpoint biomarkers in a cohort of SBA patients and assessed their impact on progression-free survival (PFS) and overall survival (OS). METHODS: 25 patient samples in the form of formalin fixed, paraffin embedded (FFPE) tissue were obtained in tissue microarray (TMAs) format. Automated immunohistochemistry (IHC) staining was performed using validated antibodies for CD3, CD4, CD8, CD68, PD-L1, ICOS, IDO1 and LAG3. Slides were scanned digitally and assessed in QuPath, an open source image analysis software, for biomarker density and percentage positivity. Survival analyses were carried out using the Kaplan Meier method. RESULTS: Varying expressions of biomarkers were recorded. High expressions of CD3, CD4 and IDO1 were significant for PFS (p = 0.043, 0.020 and 0.018 respectively). High expression of ICOS was significant for both PFS (p = 0.040) and OS (p = 0.041), while high PD-L1 expression in tumour cells was significant for OS (p = 0.033). High correlation was observed between PD-L1 and IDO1 expressions (Pearson correlation co-efficient = 1) and subsequently high IDO1 expression in tumour cells was found to be significant for PFS (p = 0.006) and OS (p = 0.034). CONCLUSIONS: High levels of immune cells and immune checkpoint proteins have a significant impact on patient survival in SBA. These data could provide an insight into the immunotherapeutic management of patients with SBA

    Dual Erb B Inhibition in Oesophago-gastric Cancer (DEBIOC): A phase I dose escalating safety study and randomised dose expansion of AZD8931 in combination with oxaliplatin and capecitabine chemotherapy in patients with oesophagogastric adenocarcinoma

    Get PDF
    Background: AZD8931 has equipotent activity against epidermal growth factor receptor, erbB2, and erbB3. Primary objectives were to determine the recommended phase II dose (RP2D) of AZD8931 + chemotherapy, and subsequently assess safety/preliminary clinical activity in patients with operable oesophagogastric cancer (OGC). Methods: AZD8931 (20 mg, 40 mg or 60 mg bd) was given with Xelox (oxaliplatin + capecitabine) for eight 21-day cycles, continuously or with intermittent schedule (4 days on/3 off every week; 14 days on/7 off, per cycle) in a rolling-six design. Subsequently, patients with OGC were randomised 2:1 to AZD8931 + Xelox at RP2D or Xelox only for two cycles, followed by radical oesophagogastric surgery. Secondary outcomes were safety, complete resection (R0) rate, six-month progression-free survival (PFS) and overall survival. Results: During escalation, four dose-limiting toxicities were observed among 24 patients: skin rash (1) and failure to deliver 100% of Xelox because of treatment-associated grade III-IV adverse events (AEs) (3: diarrhoea and vomiting; vomiting; fatigue). Serious adverse events (SAE) occurred in 15 of 24 (63%) patients. RP2D was 20-mg bd with the 4/3 schedule. In the expansion phase, 2 of 20 (10%) patients in the Xelox + AZD8931 group and 5/10 (50%) patients in the Xelox group had grade III–IV AEs. Six-month PFS was 85% (90% CI: 66%–94%) in Xelox + AZD8931 and 100% in Xelox alone. Seven deaths (35%) occurred with Xelox + AZD8931 and one (10%) with Xelox. R0 rate was 45% (9/20) with Xelox + AZD8931 and 90% (9/10) with Xelox-alone (P = 0.024). Conclusion: Xelox + AZD8931 (20 mg bd 4/3 days) has an acceptable safety profile administered as neoadjuvant therapy in operable patients with OGC. (Trial registration: EudraCT 2011-003169-13, ISRCTN-68093791)

    Mutational signatures in esophageal adenocarcinoma define etiologically distinct subgroups with therapeutic relevance

    Get PDF
    Esophageal adenocarcinoma (EAC) has a poor outcome, and targeted therapy trials have thus far been disappointing owing to a lack of robust stratification methods. Whole-genome sequencing (WGS) analysis of 129 cases demonstrated that this is a heterogeneous cancer dominated by copy number alterations with frequent large-scale rearrangements. Co-amplification of receptor tyrosine kinases (RTKs) and/or downstream mitogenic activation is almost ubiquitous; thus tailored combination RTK inhibitor (RTKi) therapy might be required, as we demonstrate in vitro. However, mutational signatures showed three distinct molecular subtypes with potential therapeutic relevance, which we verified in an independent cohort (n = 87): (i) enrichment for BRCA signature with prevalent defects in the homologous recombination pathway; (ii) dominant T>G mutational pattern associated with a high mutational load and neoantigen burden; and (iii) C>A/T mutational pattern with evidence of an aging imprint. These subtypes could be ascertained using a clinically applicable sequencing strategy (low coverage) as a basis for therapy selection

    Polycythemia vera as a presentation of renal angiomyolipoma: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Angiomyolipoma is a common benign renal tumor composed of thick-walled blood vessels, smooth muscle, and adipose tissue. It may be found incidentally during workup for suspected renal disease. Although angiomyolipoma may present as a palpable, tender renal mass with flank pain and gross or microscopic hematuria, many patients are asymptomatic. Erythrocytosis is an unusual presentation, and malignant transformation may be suspected. This report describes a rare case of a woman diagnosed with renal angiomyolipoma and polycythemia vera. The report discusses the differential diagnosis using erythropoietin, erythropoietin-receptor and Janus kinase 2.</p> <p>Case presentation</p> <p>A 79-year-old Chinese woman was diagnosed with erythrocytosis according to World Health Organization criteria. An upper left renal pole angiomyolipoma was successfully ablated after multiple phlebotomy treatments. Red cell count immediately returned to normal, but gradually increased after 4 months. Polycythemia vera was finally diagnosed by positive mutation of Janus kinase 2 and negative erythropoietin protein expression. Her clinical symptoms improved with regular phlebotomy and hydroxyurea treatment.</p> <p>Conclusion</p> <p>Concurrent occurence of angiomyolipoma and polycythemia vera is rare. Polycythemia vera can be easily missed. Polycythemia vera can be confirmed with high specificity and sensitivity by the acquired somatic mutation. Surgical intervention for this renal tumor should be avoided unless malignancy or renal cell carcinoma is suspected or to prevent spontaneous rupture of larger tumors.</p

    The transcriptional landscape of endogenous retroelements delineates esophageal adenocarcinoma subtypes

    Get PDF
    Most cancer types exhibit aberrant transcriptional activity, including derepression of retrotransposable elements (RTEs). However, the degree, specificity and potential consequences of RTE transcriptional activation may differ substantially among cancer types and subtypes. Representing one extreme of the spectrum, we characterize the transcriptional activity of RTEs in cohorts of esophageal adenocarcinoma (EAC) and its precursor Barrett's esophagus (BE) from the OCCAMS (Oesophageal Cancer Clinical and Molecular Stratification) consortium, and from TCGA (The Cancer Genome Atlas). We found exceptionally high RTE inclusion in the EAC transcriptome, driven primarily by transcription of genes incorporating intronic or adjacent RTEs, rather than by autonomous RTE transcription. Nevertheless, numerous chimeric transcripts straddling RTEs and genes, and transcripts from stand-alone RTEs, particularly KLF5- and SOX9-controlled HERVH proviruses, were overexpressed specifically in EAC. Notably, incomplete mRNA splicing and EAC-characteristic intronic RTE inclusion was mirrored by relative loss of the respective fully-spliced, functional mRNA isoforms, consistent with compromised cellular fitness. Defective RNA splicing was linked with strong transcriptional activation of a HERVH provirus on Chr Xp22.32 and defined EAC subtypes with distinct molecular features and prognosis. Our study defines distinguishable RTE transcriptional profiles of EAC, reflecting distinct underlying processes and prognosis, thus providing a framework for targeted studies

    Context-dependent effects of CDKN2A and other 9p21 gene losses during the evolution of esophageal cancer

    Get PDF
    CDKN2A is a tumor suppressor located in chromosome 9p21 and frequently lost in Barrett’s esophagus (BE) and esophageal adenocarcinoma (EAC). How CDKN2A and other 9p21 gene co-deletions affect EAC evolution remains understudied. We explored the effects of 9p21 loss in EACs and cancer progressor and non-progressor BEs with matched genomic, transcriptomic and clinical data. Despite its cancer driver role, CDKN2A loss in BE prevents EAC initiation by counterselecting subsequent TP53 alterations. 9p21 gene co-deletions predict poor patient survival in EAC but not BE through context-dependent effects on cell cycle, oxidative phosphorylation and interferon response. Immune quantifications using bulk transcriptome, RNAscope and high-dimensional tissue imaging showed that IFNE loss reduces immune infiltration in BE, but not EAC. Mechanistically, CDKN2A loss suppresses the maintenance of squamous epithelium, contributing to a more aggressive phenotype. Our study demonstrates context-dependent roles of cancer genes during disease evolution, with consequences for cancer detection and patient management

    Transcriptomic profiling reveals three molecular phenotypes of adenocarcinoma at the gastro-esophageal junction

    Get PDF
    Cancers occurring at the gastroesophageal junction (GEJ) are classified as predominantly esophageal or gastric, which is often difficult to decipher. We hypothesized that the transcriptomic profile might reveal molecular subgroups which could help to define the tumor origin and behavior beyond anatomical location. The gene expression profiles of 107 treatment‐naïve, intestinal type, gastroesophageal adenocarcinomas were assessed by the Illumina‐HTv4.0 beadchip. Differential gene expression (limma), unsupervised subgroup assignment (mclust) and pathway analysis (gage) were undertaken in R statistical computing and results were related to demographic and clinical parameters. Unsupervised assignment of the gene expression profiles revealed three distinct molecular subgroups, which were not associated with anatomical location, tumor stage or grade (p > 0.05). Group 1 was enriched for pathways involved in cell turnover, Group 2 was enriched for metabolic processes and Group 3 for immune‐response pathways. Patients in group 1 showed the worst overall survival (p = 0.019). Key genes for the three subtypes were confirmed by immunohistochemistry. The newly defined intrinsic subtypes were analyzed in four independent datasets of gastric and esophageal adenocarcinomas with transcriptomic data available (RNAseq data: OCCAMS cohort, n = 158; gene expression arrays: Belfast, n = 63; Singapore, n = 191; Asian Cancer Research Group, n = 300). The subgroups were represented in the independent cohorts and pooled analysis confirmed the prognostic effect of the new subtypes. In conclusion, adenocarcinomas at the GEJ comprise three distinct molecular phenotypes which do not reflect anatomical location but rather inform our understanding of the key pathways expressed

    Rearrangement processes and structural variations show evidence of selection in oesophageal adenocarcinomas

    Get PDF
    Oesophageal adenocarcinoma (OAC) provides an ideal case study to characterize large-scale rearrangements. Using whole genome short-read sequencing of 383 cases, for which 214 had matched whole transcriptomes, we observed structural variations (SV) with a predominance of deletions, tandem duplications and inter-chromosome junctions that could be identified as LINE-1 mobile element (ME) insertions. Complex clusters of rearrangements resembling breakage-fusion-bridge cycles or extrachromosomal circular DNA accounted for 22% of complex SVs affecting known oncogenes. Counting SV events affecting known driver genes substantially increased the recurrence rates of these drivers. After excluding fragile sites, we identified 51 candidate new drivers in genomic regions disrupted by SVs, including ETV5, KAT6B and CLTC. RUNX1 was the most recurrently altered gene (24%), with many deletions inactivating the RUNT domain but preserved the reading frame, suggesting an altered protein product. These findings underscore the importance of identification of SV events in OAC with implications for targeted therapies
    corecore