59 research outputs found

    Functional stacking of three resistance genes against Phytophthora infestans in potato

    Get PDF
    Functional stacking of broad spectrum resistance (R) genes could potentially be an effective strategy for more durable disease resistance, for example, to potato late blight caused by Phytophthora infestans (Pi). For this reason, three broad spectrum potato R genes (Rpi), Rpi-sto1 (Solanum stoloniferum), Rpi-vnt1.1 (S. venturii) and Rpi-blb3 (S. bulbocastanum) were selected, combined into a single binary vector pBINPLUS and transformed into the susceptible cultivar Desiree. Among the 550 kanamycin resistant regenerants, 28 were further investigated by gene specific PCRs. All regenerants were positive for the nptII gene and 23 of them contained the three Rpi genes, referred to as triple Rpi gene transformants. Detached leaf assay and agro-infiltration of avirulence (Avr) genes showed that the 23 triple Rpi gene transformants were resistant to the selected isolates and showed HR with the three Avr effectors indicating functional stacking of all the three Rpi genes. It is concluded that Avr genes, corresponding to the R genes to be stacked, must be available in order to assay for functionality of each stack component. No indications were found for silencing or any other negative effects affecting the function of the inserted Rpi genes. The resistance spectrum of these 23 triple Rpi gene transformants was, as expected, a sum of the spectra from the three individual Rpi genes. This is the first example of a one-step approach for the simultaneous domestication of three natural R genes against a single disease by genetic transformation

    A genome-wide genetic map of NB-LRR disease resistance loci in potato

    Get PDF
    Like all plants, potato has evolved a surveillance system consisting of a large array of genes encoding for immune receptors that confer resistance to pathogens and pests. The majority of these so-called resistance or R proteins belong to the super-family that harbour a nucleotide binding and a leucine-rich-repeat domain (NB-LRR). Here, sequence information of the conserved NB domain was used to investigate the genome-wide genetic distribution of the NB-LRR resistance gene loci in potato. We analysed the sequences of 288 unique BAC clones selected using filter hybridisation screening of a BAC library of the diploid potato clone RH89-039-16 (S. tuberosum ssp. tuberosum) and a physical map of this BAC library. This resulted in the identification of 738 partial and full-length NB-LRR sequences. Based on homology of these sequences with known resistance genes, 280 and 448 sequences were classified as TIR-NB-LRR (TNL) and CC-NB-LRR (CNL) sequences, respectively. Genetic mapping revealed the presence of 15 TNL and 32 CNL loci. Thirty-six are novel, while three TNL loci and eight CNL loci are syntenic with previously identified functional resistance genes. The genetic map was complemented with 68 universal CAPS markers and 82 disease resistance trait loci described in literature, providing an excellent template for genetic studies and applied research in potato

    The substrate and adding material to it

    No full text

    Development of SNP markers linked to the L locus in Capsicum spp. by a comparative genetic analysis

    No full text
    In pepper, the TMV resistance locus L is syntenic to the tomato I2 and the potato R3 loci on chromosome 11. In this report, we identified pepper bacterial artificial chromosome (BAC) clones corresponding to the I2 and R3 loci and developed L-linked markers using the BAC sequence information. A BAC library was screened using the tomato I2C-1 gene as a probe. The resulting clones were sorted further by PCR screening, sequencing, and genetic mapping. A linkage analysis revealed that BAC clone 082F03 could be anchored to the target region near TG36 on chromosome 11. Using the 082F03 sequence, more BAC clones were identified and a BAC contig spanning 224 kb was constructed. Gene prediction analysis showed that there were at least three I2/R3 R gene analogs (RGAs) in the BAC contig. Three DNA markers closely linked (about 1.2 cM) to the L4 gene were developed by using the BAC contig sequence. The single nucleotide polymorphism marker 087H3T7 developed in this study was subjected to linkage analysis in L4- and L3-segregating populations together with previously developed markers. The 189D23M marker, which is known to co-segregate with L3, was located on the opposite side of 087H3T7, about 0.7 cM away from L4. This supports the idea that L3 and L4 may be different genes closely linked within the region instead of different alleles at the same locus. Finally, use of flanking markers in molecular breeding program for introgression of L4 to elite germplasm against most aggressive tobamoviruses pathotype P1,2,3 is discussed. © Springer Science+Business Media B.V. 2009
    corecore