1,245 research outputs found
Synchronisation of egg hatching of brown hairstreak (Thecla betulae) and budburst of blackthorn (Prunus spinosa) in a warmer future
Synchronisation of the phenology of insect herbivores and their larval food plant is essential for the herbivores’ fitness. The monophagous brown hairstreak (Thecla betulae) lays its eggs during summer, hibernates as an egg, and hatches in April or May in the Netherlands. Its main larval food plant blackthorn (Prunus spinosa) flowers in early spring, just before the leaves appear. As soon as the Blackthorn opens its buds, and this varies with spring temperatures, food becomes available for the brown hairstreak. However, the suitability of the leaves as food for the young caterpillars is expected to decrease rapidly. Therefore, the timing of egg hatch is an important factor for larval growth. This study evaluates food availability for brown hairstreak at different temperatures. Egg hatch and budburst were monitored from 2004 to 2008 at different sites in the Netherlands. Results showed ample food availability at all monitored temperatures and sites but the degree of synchrony varied strongly with spring temperatures. To further study the effect of temperature on synchronisation, an experiment using normal temperatures of a reference year (T) and temperatures of T + 5°C was carried out in climate chambers. At T + 5°C, both budburst and egg hatch took place about 20 days earlier and thus, on average, elevated temperature did not affect synchrony. However, the total period of budburst was 11 days longer, whereas the period of egg hatching was 3 days shorter. The implications for larval growth by the brown hairstreak under a warmer climate are considered.
The what and where of adding channel noise to the Hodgkin-Huxley equations
One of the most celebrated successes in computational biology is the
Hodgkin-Huxley framework for modeling electrically active cells. This
framework, expressed through a set of differential equations, synthesizes the
impact of ionic currents on a cell's voltage -- and the highly nonlinear impact
of that voltage back on the currents themselves -- into the rapid push and pull
of the action potential. Latter studies confirmed that these cellular dynamics
are orchestrated by individual ion channels, whose conformational changes
regulate the conductance of each ionic current. Thus, kinetic equations
familiar from physical chemistry are the natural setting for describing
conductances; for small-to-moderate numbers of channels, these will predict
fluctuations in conductances and stochasticity in the resulting action
potentials. At first glance, the kinetic equations provide a far more complex
(and higher-dimensional) description than the original Hodgkin-Huxley
equations. This has prompted more than a decade of efforts to capture channel
fluctuations with noise terms added to the Hodgkin-Huxley equations. Many of
these approaches, while intuitively appealing, produce quantitative errors when
compared to kinetic equations; others, as only very recently demonstrated, are
both accurate and relatively simple. We review what works, what doesn't, and
why, seeking to build a bridge to well-established results for the
deterministic Hodgkin-Huxley equations. As such, we hope that this review will
speed emerging studies of how channel noise modulates electrophysiological
dynamics and function. We supply user-friendly Matlab simulation code of these
stochastic versions of the Hodgkin-Huxley equations on the ModelDB website
(accession number 138950) and
http://www.amath.washington.edu/~etsb/tutorials.html.Comment: 14 pages, 3 figures, review articl
Recommended from our members
Reconstruction and measurement of (100) MeV energy electromagnetic activity from π0 arrow γγ decays in the MicroBooNE LArTPC
We present results on the reconstruction of electromagnetic (EM) activity from photons produced in charged current νμ interactions with final state π0s. We employ a fully-automated reconstruction chain capable of identifying EM showers of (100) MeV energy, relying on a combination of traditional reconstruction techniques together with novel machine-learning approaches. These studies demonstrate good energy resolution, and good agreement between data and simulation, relying on the reconstructed invariant π0 mass and other photon distributions for validation. The reconstruction techniques developed are applied to a selection of νμ + Ar → μ + π0 + X candidate events to demonstrate the potential for calorimetric separation of photons from electrons and reconstruction of π0 kinematics
Compared to conventional, ecological intensive management promotes beneficial proteolytic soil microbial communities for agro-ecosystem functioning under climate change-induced rain regimes
Projected climate change and rainfall variability will affect soil microbial communities, biogeochemical cycling and agriculture. Nitrogen (N) is the most limiting nutrient in agroecosystems and its cycling and availability is highly dependent on microbial driven processes. In agroecosystems, hydrolysis of organic nitrogen (N) is an important step in controlling soil N availability. We analyzed the effect of management (ecological intensive vs. conventional intensive) on N-cycling processes and involved microbial communities under climate change-induced rain regimes. Terrestrial model ecosystems originating from agroecosystems across Europe were subjected to four different rain regimes for 263 days. Using structural equation modelling we identified direct impacts of rain regimes on N-cycling processes, whereas N-related microbial communities were more resistant. In addition to rain regimes, management indirectly affected N-cycling processes via modifications of N-related microbial community composition. Ecological intensive management promoted a beneficial N-related microbial community composition involved in N-cycling processes under climate change-induced rain regimes. Exploratory analyses identified phosphorus-associated litter properties as possible drivers for the observed management effects on N-related microbial community composition. This work provides novel insights into mechanisms controlling agro-ecosystem functioning under climate change
Ethical and legal implications of whole genome and whole exome sequencing in African populations
BACKGROUND: Rapid advances in high throughput genomic technologies and next generation sequencing are
making medical genomic research more readily accessible and affordable, including the sequencing of patient and
control whole genomes and exomes in order to elucidate genetic factors underlying disease. Over the next five
years, the Human Heredity and Health in Africa (H3Africa) Initiative, funded by the Wellcome Trust (United
Kingdom) and the National Institutes of Health (United States of America), will contribute greatly towards
sequencing of numerous African samples for biomedical research.
DISCUSSION: Funding agencies and journals often require submission of genomic data from research participants to
databases that allow open or controlled data access for all investigators. Access to such genotype-phenotype and
pedigree data, however, needs careful control in order to prevent identification of individuals or families. This is
particularly the case in Africa, where many researchers and their patients are inexperienced in the ethical issues
accompanying whole genome and exome research; and where an historical unidirectional flow of samples and
data out of Africa has created a sense of exploitation and distrust. In the current study, we analysed the
implications of the anticipated surge of next generation sequencing data in Africa and the subsequent data sharing
concepts on the protection of privacy of research subjects. We performed a retrospective analysis of the informed
consent process for the continent and the rest-of-the-world and examined relevant legislation, both current and
proposed. We investigated the following issues: (i) informed consent, including guidelines for performing
culturally-sensitive next generation sequencing research in Africa and availability of suitable informed consent
documents; (ii) data security and subject privacy whilst practicing data sharing; (iii) conveying the implications of
such concepts to research participants in resource limited settings.
SUMMARY: We conclude that, in order to meet the unique requirements of performing next generation
sequencing-related research in African populations, novel approaches to the informed consent process are required.
This will help to avoid infringement of privacy of individual subjects as well as to ensure that informed consent
adheres to acceptable data protection levels with regard to use and transfer of such information
Reversible Keap1 inhibitors are preferential pharmacological tools to modulate cellular mitophagy
Mitophagy orchestrates the autophagic degradation of dysfunctional mitochondria preventing their pathological accumulation and contributing to cellular homeostasis. We previously identified a novel chemical tool (hereafter referred to as PMI), which drives mitochondria into autophagy without collapsing their membrane potential (ΔΨm). PMI is an inhibitor of the protein-protein interaction (PPI) between the transcription factor Nrf2 and its negative regulator, Keap1 and is able to up-regulate the expression of autophagy-associated proteins, including p62/SQSTM1. Here we show that PMI promotes mitochondrial respiration, leading to a superoxide-dependent activation of mitophagy. Structurally distinct Keap1-Nrf2 PPI inhibitors promote mitochondrial turnover, while covalent Keap1 modifiers, including sulforaphane (SFN) and dimethyl fumarate (DMF), are unable to induce a similar response. Additionally, we demonstrate that SFN reverses the effects of PMI in co-treated cells by reducing the accumulation of p62 in mitochondria and subsequently limiting their autophagic degradation. This study highlights the unique features of Keap1-Nrf2 PPI inhibitors as inducers of mitophagy and their potential as pharmacological agents for the treatment of pathological conditions characterized by impaired mitochondrial quality control
Use of stochastic simulation to evaluate the reduction in methane emissions and improvement in reproductive efficiency from routine hormonal interventions in dairy herds
This study predicts the magnitude and between herd variation in changes of methane emissions and production efficiency associated with interventions to improve reproductive efficiency in dairy cows. Data for 10,000 herds of 200 cows were simulated. Probability of conception was predicted daily from the start of the study (parturition) for each cow up to day 300 of lactation. Four scenarios of differing first insemination management were simulated for each herd using the same theoretical cows: A baseline scenario based on breeding from observed oestrus only, synchronisation of oestrus for pre-set first insemination using 2 methods, and a regime using prostaglandin treatments followed by first insemination to observed oestrus. Cows that did not conceive to first insemination were re-inseminated following detection of oestrus. For cows that conceived, gestation length was 280 days with cessation of milking 60 days before calving. Those cows not pregnant after 300 days of lactation were culled and replaced by a heifer. Daily milk yield was calculated for 730 days from the start of the study for each cow. Change in mean reproductive and economic outputs were summarised for each herd following the 3 interventions. For each scenario, methane emissions were determined by daily forage dry matter intake, forage quality, and cow replacement risk. Linear regression was used to summarise relationships. In some circumstances improvement in reproductive efficiency using the programmes investigated was associated with reduced cost and methane emissions compared to reliance on detection of oestrus. Efficiency of oestrus detection and the time to commencement of breeding after calving influenced variability in changes in cost and methane emissions. For an average UK herd this was a saving of at least £50 per cow and a 3.6% reduction in methane emissions per L of milk when timing of first insemination was pre-set
Recommended from our members
Calibration of the charge and energy loss per unit length of the MicroBooNE liquid argon time projection chamber using muons and protons
We describe a method used to calibrate the position- and time-dependent response of the MicroBooNE liquid argon time projection chamber anode wires to ionization particle energy loss. The method makes use of crossing cosmic-ray muons to partially correct anode wire signals for multiple effects as a function of time and position, including cross-connected TPC wires, space charge effects, electron attachment to impurities, diffusion, and recombination. The overall energy scale is then determined using fully-contained beam-induced muons originating and stopping in the active region of the detector. Using this method, we obtain an absolute energy scale uncertainty of 2% in data. We use stopping protons to further refine the relation between the measured charge and the energy loss for highly-ionizing particles. This data-driven detector calibration improves both the measurement of total deposited energy and particle identification based on energy loss per unit length as a function of residual range. As an example, the proton selection efficiency is increased by 2% after detector calibration
Economic-demographic interactions in long-run growth
Cliometrics confirms that Malthus’ model of the pre-industrial economy, in which increases in productivity raise population but higher population drives down wages, is a good description for much of demographic/economic history. A contributor to the Malthusian equilibrium was the Western European Marriage Pattern, the late age of female first marriage, which promised to retard the fall of living standards by restricting fertility. The demographic transition and the transition from Malthusian economies to modern economic growth attracted many Cliometric models surveyed here. A popular model component is that lower levels of mortality over many centuries increased the returns to, or preference for, human capital investment so that technical progress eventually accelerated. This initially boosted birth rates and population growth accelerated. Fertility decline was earliest and most striking in late eighteenth century France. By the 1830s the fall in French marital fertility is consistent with a response to the rising opportunity cost of children. The rest of Europe did not begin to follow until end of the nineteenth century. Interactions between the economy and migration have been modelled with Cliometric structures closely related to those of natural increase and the economy. Wages were driven up by emigration from Europe and reduced in the economies receiving immigrants
Contralateral hip fractures and other osteoporosis-related fractures in hip fracture patients: Incidence and risk factors. An observational cohort study of 1,229 patients
Purpose: To report risk factors, 1-year and overall risk for a contralateral hip and other osteoporosis-related fractures in a hip fracture population. Methods: An observational study on 1,229 consecutive patients of 50 years and older, who sustained a hip fracture between January 2005 and June 2009. Fractures were scored retrospectively for 2005-2008 and prospectively for 2008-2009. Rates of a contralateral hip and other osteoporosis- related fractures were compared between patients with and without a history of a fracture. Previous fractures, gender, age and ASA classification were analysed as possible risk factors. Results: The absolute risk for a contralateral hip fracture was 13.8 %, for one or more osteoporosis-related fracture( s) 28.6 %. First-, second- and third-year risk for a second hip fracture was 2, 1 and 0 %. Median (IQR) interval between both hip fractures was 18.5 (26.6) months. One-year incidence of other fractures was 6 %. Only age was a risk factor for a contralateral hip fracture, hazard ratio (HR) 1.02 (1.006-1.042, p = 0.008). Patients with a history of a fracture (33.1 %) did not have a higher incidence of fractures during follow-up (16.7 %) than patients without fractures in their history (14 %). HR for a contralateral hip fracture for the fracture versus the non-fracture group was 1.29 (0.75-2.23, p = 0.360). Conclusion: The absolute risk of a contralateral hip fracture after a hip fracture is 13.8 %, the 1-year risk was 2 %, with a short interval between the 2 hip fractures. Age was a risk factor for sustaining a contralateral hip fracture; a fracture in history was not
- …
