173 research outputs found
Depression and Sexual Orientation During Young Adulthood: Diversity Among Sexual Minority Subgroups and the Role of Gender Nonconformity.
Sexual minority individuals are at an elevated risk for depression compared to their heterosexual counterparts, yet less is known about how depression status varies across sexual minority subgroups (i.e., mostly heterosexuals, bisexuals, and lesbians and gay men). Moreover, studies on the role of young adult gender nonconformity in the relation between sexual orientation and depression are scarce and have yielded mixed findings. The current study examined the disparities between sexual minorities and heterosexuals during young adulthood in concurrent depression near the beginning of young adulthood and prospective depression 6 years later, paying attention to the diversity within sexual minority subgroups and the role of gender nonconformity. Drawn from the National Longitudinal Study of Adolescent Health (N = 9421), we found that after accounting for demographics, sampling weight, and sampling design, self-identified mostly heterosexual and bisexual young adults, but not lesbians and gay men, reported significantly higher concurrent depression compared to heterosexuals; moreover, only mostly heterosexual young adults were more depressed than heterosexuals 6 years later. Furthermore, while young adult gender nonconforming behavior was associated with more concurrent depression regardless of sexual orientation, its negative impact on mental health decreased over time. Surprisingly, previous gender nonconformity predicted decreased prospective depression among lesbians and gay men whereas, among heterosexual individuals, increased gender nonconformity was not associated with prospective depression. Together, the results suggested the importance of investigating diversity and the influence of young adult gender nonconformity in future research on the mental health of sexual minorities.The authors acknowledge support for this research: the University of Arizona Norton School of Family and Consumer Sciences Fitch Nesbitt Endowment and a University of Arizona Graduate Access Fellowship to the second author. This research uses data from Add Health, a program project directed by Kathleen Mullan Harris and designed by J. Richard Udry, Peter S. Bearman, and Kathleen Mullan Harris at the University of North Carolina at Chapel Hill, and funded by grant P01-HD31921 from the Eunice Kennedy Shriver National Institute of Child Health and Human Development, with cooperative funding from 23 other federal agencies and foundations. Special acknowledgment is due Ronald R. Rindfuss and Barbara Entwisle for assistance in the original design. Information on how to obtain the Add Health data files is available on the Add Health website (http://www.cpc.unc.edu/addhealth). No direct support was received from grant P01-HD31921 for this analysis. The authors thank Noel Card and Susan Stryker for comments on the previous versions of this article and Richard Lippa and Katerina Sinclair for methodological and statistical consult. The authors also thank the anonymous reviewers and the Editor for their helpful comments.This is the accepted manuscript of a paper published in Archives of Sexual Behavior (Li G, Pollitt AM, Russell ST, Archives of Sexual Behavior 2015, doi:10.1007/s10508-015-0515-3). The final version is available at http://dx.doi.org/10.1007/s10508-015-0515-3
Single-day therapy: an expert opinion on a recent development for the episodic treatment of recurrent genital herpes
One common method for treating recurrent genital herpes outbreaks is 3–5 day episodic therapy with nucleoside analogues. However, since maximum viral replication occurs within 24 h after the onset of symptoms, short-term patient-initiated episodic therapy started at prodromal onset or at the first appearance of lesions in patients without a prodrome may represent an important option. In a recent randomized trial, single-day famciclovir treatment decreased lesion healing time and the duration of pain and other symptoms by approximately 2 days compared to placebo, and prevented progression to a full outbreak in almost one in four patients. Because single-day treatment is more convenient than traditional therapies, it may lead to improved patient compliance and better overall management of recurrent genital herpes outbreaks
Typology of adults diagnosed with mental disorders based on socio-demographics and clinical and service use characteristics
<p>Abstract</p> <p>Background</p> <p>Mental disorder is a leading cause of morbidity worldwide. Its cost and negative impact on productivity are substantial. Consequently, improving mental health-care system efficiency - especially service utilisation - is a priority. Few studies have explored the use of services by specific subgroups of persons with mental disorder; a better understanding of these individuals is key to improving service planning. This study develops a typology of individuals, diagnosed with mental disorder in a 12-month period, based on their individual characteristics and use of services within a Canadian urban catchment area of 258,000 persons served by a psychiatric hospital.</p> <p>Methods</p> <p>From among the 2,443 people who took part in the survey, 406 (17%) experienced at least one episode of mental disorder (as per the Composite International Diagnostic Interview (CIDI)) in the 12 months pre-interview. These individuals were selected for cluster analysis.</p> <p>Results</p> <p>Analysis yielded four user clusters: people who experienced mainly anxiety disorder; depressive disorder; alcohol and/or drug disorder; and multiple mental and dependence disorder. Two clusters were more closely associated with females and anxiety or depressive disorders. In the two other clusters, males were over-represented compared with the sample as a whole, namely, substance abuses with or without concomitant mental disorder. Clusters with the greatest number of mental disorders per subject used a greater number of mental health-care services. Conversely, clusters associated exclusively with dependence disorders used few services.</p> <p>Conclusion</p> <p>The study found considerable heterogeneity among socio-demographic characteristics, number of disorders, and number of health-care services used by individuals with mental or dependence disorders. Cluster analysis revealed important differences in service use with regard to gender and age. It reinforces the relevance of developing targeted programs for subgroups of individuals with mental and/or dependence disorders. Strategies aimed at changing low service users' attitude (youths and males) or instituting specialised programs for that particular clientele should be promoted. Finally, as concomitant disorders are frequent among individuals with mental disorder, psychological services and/or addiction programs must be prioritised as components of integrated services when planning treatment.</p
Nanotechnology researchers' collaboration relationships: A gender analysis of access to scientific information
Women are underrepresented in science, technology, engineering, and mathematics fields, particularly at higher levels of organizations. This article investigates the impact of this underrepresentation on the processes of interpersonal collaboration in nanotechnology. Analyses are conducted to assess: (1) the comparative tie strength of women's and men's collaborations, (2) whether women and men gain equal access to scientific information through collaborators, (3) which tie characteristics are associated with access to information for women and men, and (4) whether women and men acquire equivalent amounts of information by strengthening ties. Our results show that the overall tie strength is less for women's collaborations and that women acquire less strategic information through collaborators. Women and men rely on different tie characteristics in accessing information, but are equally effective in acquiring additional information resources by strengthening ties. This article demonstrates that the underrepresentation of women in science, technology, engineering, and mathematics has an impact on the interpersonal processes of scientific collaboration, to the disadvantage of women scientists.Villanueva-Felez, Á.; Woolley, RD.; Cañibano Sánchez, C. (2015). Nanotechnology researchers' collaboration relationships: A gender analysis of access to scientific information. Social Studies of Science. 45(1):100-129. doi:10.1177/0306312714552347S100129451ACKER, J. (1990). HIERARCHIES, JOBS, BODIES: Gender & Society, 4(2), 139-158. doi:10.1177/089124390004002002Aitken, C., Power, R., & Dwyer, R. (2008). A very low response rate in an on-line survey of medical practitioners. Australian and New Zealand Journal of Public Health, 32(3), 288-289. doi:10.1111/j.1753-6405.2008.00232.xAngrist, J. D., & Pischke, J.-S. (2009). Mostly Harmless Econometrics. doi:10.1515/9781400829828Baruch, Y., & Holtom, B. C. (2008). Survey response rate levels and trends in organizational research. Human Relations, 61(8), 1139-1160. doi:10.1177/0018726708094863Beaver, D. D. (2001). Scientometrics, 52(3), 365-377. doi:10.1023/a:1014254214337Boardman, P. C., & Corley, E. A. (2008). University research centers and the composition of research collaborations. Research Policy, 37(5), 900-913. doi:10.1016/j.respol.2008.01.012Bourdieu, P. (1975). The specificity of the scientific field and the social conditions of the progress of reason. Social Science Information, 14(6), 19-47. doi:10.1177/053901847501400602Bourdieu, P. (1977). Outline of a Theory of Practice. doi:10.1017/cbo9780511812507Bourdieu, P. (1989). Social Space and Symbolic Power. Sociological Theory, 7(1), 14. doi:10.2307/202060Bouty, I. (2000). INTERPERSONAL AND INTERACTION INFLUENCES ON INFORMAL RESOURCE EXCHANGES BETWEEN R&D RESEARCHERS ACROSS ORGANIZATIONAL BOUNDARIES. Academy of Management Journal, 43(1), 50-65. doi:10.2307/1556385Bozeman, B., & Corley, E. (2004). Scientists’ collaboration strategies: implications for scientific and technical human capital. Research Policy, 33(4), 599-616. doi:10.1016/j.respol.2004.01.008Bozeman, B., & Gaughan, M. (2011). How do men and women differ in research collaborations? An analysis of the collaborative motives and strategies of academic researchers. Research Policy, 40(10), 1393-1402. doi:10.1016/j.respol.2011.07.002Bozeman, B., & Rogers, J. D. (2002). A churn model of scientific knowledge value: Internet researchers as a knowledge value collective. Research Policy, 31(5), 769-794. doi:10.1016/s0048-7333(01)00146-9Bozeman, B., Dietz, J. S., & Gaughan, M. (2001). Scientific and technical human capital: an alternative model for research evaluation. International Journal of Technology Management, 22(7/8), 716. doi:10.1504/ijtm.2001.002988Brass, D. J. (1985). MEN’S AND WOMEN’S NETWORKS: A STUDY OF INTERACTION PATTERNS AND INFLUENCE IN AN ORGANIZATION. Academy of Management Journal, 28(2), 327-343. doi:10.2307/256204Chompalov, I., Genuth, J., & Shrum, W. (2002). The organization of scientific collaborations. Research Policy, 31(5), 749-767. doi:10.1016/s0048-7333(01)00145-7Cook, C., Heath, F., & Thompson, R. L. (2000). A Meta-Analysis of Response Rates in Web- or Internet-Based Surveys. Educational and Psychological Measurement, 60(6), 821-836. doi:10.1177/00131640021970934Durbin, S. (2010). Creating Knowledge through Networks: a Gender Perspective. Gender, Work & Organization, 18(1), 90-112. doi:10.1111/j.1468-0432.2010.00536.xEcklund, E. H., Lincoln, A. E., & Tansey, C. (2012). Gender Segregation in Elite Academic Science. Gender & Society, 26(5), 693-717. doi:10.1177/0891243212451904Ensign, P. C. (2009). Knowledge Sharing among Scientists. doi:10.1057/9780230617131Etzkowitz, H., Kemelgor, C., & Uzzi, B. (2000). Athena Unbound. doi:10.1017/cbo9780511541414Flyvbjerg, B. (2001). Making Social Science Matter. doi:10.1017/cbo9780511810503FOX, M. F. (2001). WOMEN, SCIENCE, AND ACADEMIA. Gender & Society, 15(5), 654-666. doi:10.1177/089124301015005002Fox, M. F. (2010). Women and Men Faculty in Academic Science and Engineering: Social-Organizational Indicators and Implications. American Behavioral Scientist, 53(7), 997-1012. doi:10.1177/0002764209356234Fox, M. F., & Stephan, P. E. (2001). Careers of Young Scientists: Social Studies of Science, 31(1), 109-122. doi:10.1177/030631201031001006Fox, M. F., Sonnert, G., & Nikiforova, I. (2009). Successful Programs for Undergraduate Women in Science and Engineering: Adapting versus Adopting the Institutional Environment. Research in Higher Education, 50(4), 333-353. doi:10.1007/s11162-009-9120-4Friedkin, N. (1980). A test of structural features of granovetter’s strength of weak ties theory. Social Networks, 2(4), 411-422. doi:10.1016/0378-8733(80)90006-4Gaughan, M. (2005). Introduction to the Symposium: Women in Science. The Journal of Technology Transfer, 30(4), 339-342. doi:10.1007/s10961-005-2579-zGaughan, M., & Corley, E. A. (2010). Science faculty at US research universities: The impacts of university research center-affiliation and gender on industrial activities. Technovation, 30(3), 215-222. doi:10.1016/j.technovation.2009.12.001Granovetter, M. S. (1973). The Strength of Weak Ties. American Journal of Sociology, 78(6), 1360-1380. doi:10.1086/225469Hansen, M. T. (1999). The Search-Transfer Problem: The Role of Weak Ties in Sharing Knowledge across Organization Subunits. Administrative Science Quarterly, 44(1), 82. doi:10.2307/2667032Ibarra, H. (1992). Homophily and Differential Returns: Sex Differences in Network Structure and Access in an Advertising Firm. Administrative Science Quarterly, 37(3), 422. doi:10.2307/2393451Islam, N., & Miyazaki, K. (2009). Nanotechnology innovation system: Understanding hidden dynamics of nanoscience fusion trajectories. Technological Forecasting and Social Change, 76(1), 128-140. doi:10.1016/j.techfore.2008.03.021Katz, J. S., & Martin, B. R. (1997). What is research collaboration? Research Policy, 26(1), 1-18. doi:10.1016/s0048-7333(96)00917-1Koch, N. S., & Emrey, J. A. . (2001). The Internet and Opinion Measurement: Surveying Marginalized Populations. Social Science Quarterly, 82(1), 131-138. doi:10.1111/0038-4941.00012Kyvik, S., & Teigen, M. (1996). Child Care, Research Collaboration, and Gender Differences in Scientific Productivity. Science, Technology, & Human Values, 21(1), 54-71. doi:10.1177/016224399602100103Lee, S., & Bozeman, B. (2005). The Impact of Research Collaboration on Scientific Productivity. Social Studies of Science, 35(5), 673-702. doi:10.1177/0306312705052359Levin, D. Z., & Cross, R. (2004). The Strength of Weak Ties You Can Trust: The Mediating Role of Trust in Effective Knowledge Transfer. Management Science, 50(11), 1477-1490. doi:10.1287/mnsc.1030.0136Lin, N. (2001). Social Capital. doi:10.1017/cbo9780511815447McFadyen, M. A., & Cannella, A. A. (2004). SOCIAL CAPITAL AND KNOWLEDGE CREATION: DIMINISHING RETURNS OF THE NUMBER AND STRENGTH OF EXCHANGE RELATIONSHIPS. Academy of Management Journal, 47(5), 735-746. doi:10.2307/20159615McFadyen, M. A., Semadeni, M., & Cannella, A. A. (2009). Value of Strong Ties to Disconnected Others: Examining Knowledge Creation in Biomedicine. Organization Science, 20(3), 552-564. doi:10.1287/orsc.1080.0388Manfreda, K. L., Bosnjak, M., Berzelak, J., Haas, I., & Vehovar, V. (2008). Web Surveys versus other Survey Modes: A Meta-Analysis Comparing Response Rates. International Journal of Market Research, 50(1), 79-104. doi:10.1177/147078530805000107Marsden, P. V., & Campbell, K. E. (1984). Measuring Tie Strength. Social Forces, 63(2), 482. doi:10.2307/2579058Mason, M. A., & Ekman, E. M. (2007). Mothers on the Fast TrackHow a New Generation Can Balance Family and Careers. doi:10.1093/acprof:oso/9780195182675.001.0001Mayer, R. C., Davis, J. H., & Schoorman, F. D. (1995). An Integrative Model Of Organizational Trust. Academy of Management Review, 20(3), 709-734. doi:10.5465/amr.1995.9508080335Nahapiet, J., & Ghoshal, S. (1998). Social Capital, Intellectual Capital, and the Organizational Advantage. Academy of Management Review, 23(2), 242-266. doi:10.5465/amr.1998.533225Oliver, A. L., & Liebeskind, J. P. (1997). Three Levels of Networking for Sourcing Intellectual Capital in Biotechnology. International Studies of Management & Organization, 27(4), 76-103. doi:10.1080/00208825.1997.11656719Podolny, J. M., & Baron, J. N. (1997). Resources and Relationships: Social Networks and Mobility in the Workplace. American Sociological Review, 62(5), 673. doi:10.2307/2657354Rhoton, L. A. (2011). Distancing as a Gendered Barrier. Gender & Society, 25(6), 696-716. doi:10.1177/0891243211422717Rothstein, M. G., & Davey, L. M. (1995). Gender differences in network relationships in academia. Women in Management Review, 10(6), 20-25. doi:10.1108/09649429510095999Rowley, T., Behrens, D., & Krackhardt, D. (2000). Redundant governance structures: an analysis of structural and relational embeddedness in the steel and semiconductor industries. Strategic Management Journal, 21(3), 369-386. doi:10.1002/(sici)1097-0266(200003)21:33.0.co;2-mSCOTT, D. B. (1996). SHATTERING THE INSTRUMENTAL-EXPRESSIVE MYTH. Gender & Society, 10(3), 232-247. doi:10.1177/089124396010003003Shapin, S. (1994). A Social History of Truth. doi:10.7208/chicago/9780226148847.001.0001Shrum, W., Chompalov, I., & Genuth, J. (2001). Trust, Conflict and Performance in Scientific Collaborations. Social Studies of Science, 31(5), 681-730. doi:10.1177/030631201031005002Smith-Doerr, L. (2004). Flexibility and Fairness: Effects of the Network Form of Organization on Gender Equity in Life Science Careers. Sociological Perspectives, 47(1), 25-54. doi:10.1525/sop.2004.47.1.25Stix, G. (2001). Little Big Science. Scientific American, 285(3), 32-37. doi:10.1038/scientificamerican0901-32Uzzi, B. (1996). The Sources and Consequences of Embeddedness for the Economic Performance of Organizations: The Network Effect. American Sociological Review, 61(4), 674. doi:10.2307/2096399Uzzi, B. (1997). Social Structure and Competition in Interfirm Networks: The Paradox of Embeddedness. Administrative Science Quarterly, 42(1), 35. doi:10.2307/2393808Vinck, D. (2010). The Sociology of Scientific Work. doi:10.4337/9781849807197Fan, W., & Yan, Z. (2010). Factors affecting response rates of the web survey: A systematic review. Computers in Human Behavior, 26(2), 132-139. doi:10.1016/j.chb.2009.10.015Ziman, J. M. (Ed.). (1994). Prometheus Bound. doi:10.1017/cbo978051158506
Jeune syndrome: description of 13 cases and a proposal for follow-up protocol
Jeune syndrome (asphyxiating thoracic dystrophy, ATD) is a rare autosomal recessive skeletal dysplasia characterized by a small, narrow chest and variable limb shortness with a considerable neonatal mortality as a result of respiratory distress. Renal, hepatic, pancreatic and ocular complications may occur later in life. We describe 13 cases with ages ranging from 9 months to 22 years. Most patients experienced respiratory problems in the first years of their life, three died, one experienced renal complications, and one had hepatic problems. With age, the thoracic malformation tends to become less pronounced and the respiratory problems decrease. The prognosis of ATD seems better than described in literature and in our opinion this justifies long term intensive treatment in the first years. We also propose a follow-up protocol for patients with ATD
Acute hemorrhagic leukoencephalitis mimicking herpes simplex encephalitis: case report
Effect of a web-based chronic disease management system on asthma control and health-related quality of life: study protocol for a randomized controlled trial
<p>Abstract</p> <p>Background</p> <p>Asthma is a prevalent and costly disease resulting in reduced quality of life for a large proportion of individuals. Effective patient self-management is critical for improving health outcomes. However, key aspects of self-management such as self-monitoring of behaviours and symptoms, coupled with regular feedback from the health care team, are rarely addressed or integrated into ongoing care. Health information technology (HIT) provides unique opportunities to facilitate this by providing a means for two way communication and exchange of information between the patient and care team, and access to their health information, presented in personalized ways that can alert them when there is a need for action. The objective of this study is to evaluate the acceptability and efficacy of using a web-based self-management system, My Asthma Portal (MAP), linked to a case-management system on asthma control, and asthma health-related quality of life.</p> <p>Methods</p> <p>The trial is a parallel multi-centered 2-arm pilot randomized controlled trial. Participants are randomly assigned to one of two conditions: a) MAP and usual care; or b) usual care alone. Individuals will be included if they are between 18 and 70, have a confirmed asthma diagnosis, and their asthma is classified as not well controlled by their physician. Asthma control will be evaluated by calculating the amount of fast acting beta agonists recorded as dispensed in the provincial drug database, and asthma quality of life using the Mini Asthma Related Quality of Life Questionnaire. Power calculations indicated a needed total sample size of 80 subjects. Data are collected at baseline, 3, 6, and 9 months post randomization. Recruitment started in March 2010 and the inclusion of patients in the trial in June 2010.</p> <p>Discussion</p> <p>Self-management support from the care team is critical for improving chronic disease outcomes. Given the high volume of patients and time constraints during clinical visits, primary care physicians have limited time to teach and reinforce use of proven self-management strategies. HIT has the potential to provide clinicians and a large number of patients with tools to support health behaviour change.</p> <p>Trial Registration</p> <p>Current Controlled Trials <a href="http://www.controlled-trials.com/ISRCTN34326236">ISRCTN34326236</a>.</p
Structure-Based Predictive Models for Allosteric Hot Spots
In allostery, a binding event at one site in a protein modulates the behavior of a distant site. Identifying residues that relay the signal between sites remains a challenge. We have developed predictive models using support-vector machines, a widely used machine-learning method. The training data set consisted of residues classified as either hotspots or non-hotspots based on experimental characterization of point mutations from a diverse set of allosteric proteins. Each residue had an associated set of calculated features. Two sets of features were used, one consisting of dynamical, structural, network, and informatic measures, and another of structural measures defined by Daily and Gray [1]. The resulting models performed well on an independent data set consisting of hotspots and non-hotspots from five allosteric proteins. For the independent data set, our top 10 models using Feature Set 1 recalled 68–81% of known hotspots, and among total hotspot predictions, 58–67% were actual hotspots. Hence, these models have precision P = 58–67% and recall R = 68–81%. The corresponding models for Feature Set 2 had P = 55–59% and R = 81–92%. We combined the features from each set that produced models with optimal predictive performance. The top 10 models using this hybrid feature set had R = 73–81% and P = 64–71%, the best overall performance of any of the sets of models. Our methods identified hotspots in structural regions of known allosteric significance. Moreover, our predicted hotspots form a network of contiguous residues in the interior of the structures, in agreement with previous work. In conclusion, we have developed models that discriminate between known allosteric hotspots and non-hotspots with high accuracy and sensitivity. Moreover, the pattern of predicted hotspots corresponds to known functional motifs implicated in allostery, and is consistent with previous work describing sparse networks of allosterically important residues
- …
