266 research outputs found

    Asymmetric interlimb transfer of concurrent adaptation to opposing dynamic forces

    Get PDF
    Interlimb transfer of a novel dynamic force has been well documented. It has also been shown that unimanual adaptation to opposing novel environments is possible if they are associated with different workspaces. The main aim of this study was to test if adaptation to opposing velocity dependent viscous forces with one arm could improve the initial performance of the other arm. The study also examined whether this interlimb transfer occurred across an extrinsic, spatial, coordinative system or an intrinsic, joint based, coordinative system. Subjects initially adapted to opposing viscous forces separated by target location. Our measure of performance was the correlation between the speed profiles of each movement within a force condition and an ‘average’ trajectory within null force conditions. Adaptation to the opposing forces was seen during initial acquisition with a significantly improved coefficient in epoch eight compared to epoch one. We then tested interlimb transfer from the dominant to non-dominant arm (D → ND) and vice-versa (ND → D) across either an extrinsic or intrinsic coordinative system. Interlimb transfer was only seen from the dominant to the non-dominant limb across an intrinsic coordinative system. These results support previous studies involving adaptation to a single dynamic force but also indicate that interlimb transfer of multiple opposing states is possible. This suggests that the information available at the level of representation allowing interlimb transfer can be more intricate than a general movement goal or a single perceived directional error

    A theoretical model of inflammation- and mechanotransduction- driven asthmatic airway remodelling

    Get PDF
    Inflammation, airway hyper-responsiveness and airway remodelling are well-established hallmarks of asthma, but their inter-relationships remain elusive. In order to obtain a better understanding of their inter-dependence, we develop a mechanochemical morphoelastic model of the airway wall accounting for local volume changes in airway smooth muscle (ASM) and extracellular matrix in response to transient inflammatory or contractile agonist challenges. We use constrained mixture theory, together with a multiplicative decomposition of growth from the elastic deformation, to model the airway wall as a nonlinear fibre-reinforced elastic cylinder. Local contractile agonist drives ASM cell contraction, generating mechanical stresses in the tissue that drive further release of mitogenic mediators and contractile agonists via underlying mechanotransductive signalling pathways. Our model predictions are consistent with previously described inflammation-induced remodelling within an axisymmetric airway geometry. Additionally, our simulations reveal novel mechanotransductive feedback by which hyper-responsive airways exhibit increased remodelling, for example, via stress-induced release of pro-mitogenic and procontractile cytokines. Simulation results also reveal emergence of a persistent contractile tone observed in asthmatics, via either a pathological mechanotransductive feedback loop, a failure to clear agonists from the tissue, or a combination of both. Furthermore, we identify various parameter combinations that may contribute to the existence of different asthma phenotypes, and we illustrate a combination of factors which may predispose severe asthmatics to fatal bronchospasms

    Mathematical modelling of clostridial acetone-butanol-ethanol fermentation

    Get PDF
    Clostridial acetone-butanol-ethanol (ABE) fermentation features a remarkable shift in the cellular metabolic activity from acid formation, acidogenesis, to the production of industrial-relevant solvents, solventogensis. In recent decades, mathematical models have been employed to elucidate the complex interlinked regulation and conditions that determine these two distinct metabolic states and govern the transition between them. In this review, we discuss these models with a focus on the mechanisms controlling intra- and extracellular changes between acidogenesis and solventogenesis. In particular, we critically evaluate underlying model assumptions and predictions in the light of current experimental knowledge. Towards this end, we briefly introduce key ideas and assumptions applied in the discussed modelling approaches, but waive a comprehensive mathematical presentation. We distinguish between structural and dynamical models, which will be discussed in their chronological order to illustrate how new biological information facilitates the ‘evolution’ of mathematical models. Mathematical models and their analysis have significantly contributed to our knowledge of ABE fermentation and the underlying regulatory network which spans all levels of biological organization. However, the ties between the different levels of cellular regulation are not well understood. Furthermore, contradictory experimental and theoretical results challenge our current notion of ABE metabolic network structure. Thus, clostridial ABE fermentation still poses theoretical as well as experimental challenges which are best approached in close collaboration between modellers and experimentalists

    Nanotechnology researchers' collaboration relationships: A gender analysis of access to scientific information

    Get PDF
    Women are underrepresented in science, technology, engineering, and mathematics fields, particularly at higher levels of organizations. This article investigates the impact of this underrepresentation on the processes of interpersonal collaboration in nanotechnology. Analyses are conducted to assess: (1) the comparative tie strength of women's and men's collaborations, (2) whether women and men gain equal access to scientific information through collaborators, (3) which tie characteristics are associated with access to information for women and men, and (4) whether women and men acquire equivalent amounts of information by strengthening ties. Our results show that the overall tie strength is less for women's collaborations and that women acquire less strategic information through collaborators. Women and men rely on different tie characteristics in accessing information, but are equally effective in acquiring additional information resources by strengthening ties. This article demonstrates that the underrepresentation of women in science, technology, engineering, and mathematics has an impact on the interpersonal processes of scientific collaboration, to the disadvantage of women scientists.Villanueva-Felez, Á.; Woolley, RD.; Cañibano Sánchez, C. (2015). Nanotechnology researchers' collaboration relationships: A gender analysis of access to scientific information. Social Studies of Science. 45(1):100-129. doi:10.1177/0306312714552347S100129451ACKER, J. (1990). HIERARCHIES, JOBS, BODIES: Gender & Society, 4(2), 139-158. doi:10.1177/089124390004002002Aitken, C., Power, R., & Dwyer, R. (2008). A very low response rate in an on-line survey of medical practitioners. Australian and New Zealand Journal of Public Health, 32(3), 288-289. doi:10.1111/j.1753-6405.2008.00232.xAngrist, J. D., & Pischke, J.-S. (2009). Mostly Harmless Econometrics. doi:10.1515/9781400829828Baruch, Y., & Holtom, B. C. (2008). Survey response rate levels and trends in organizational research. Human Relations, 61(8), 1139-1160. doi:10.1177/0018726708094863Beaver, D. D. (2001). Scientometrics, 52(3), 365-377. doi:10.1023/a:1014254214337Boardman, P. C., & Corley, E. A. (2008). University research centers and the composition of research collaborations. Research Policy, 37(5), 900-913. doi:10.1016/j.respol.2008.01.012Bourdieu, P. (1975). The specificity of the scientific field and the social conditions of the progress of reason. Social Science Information, 14(6), 19-47. doi:10.1177/053901847501400602Bourdieu, P. (1977). Outline of a Theory of Practice. doi:10.1017/cbo9780511812507Bourdieu, P. (1989). Social Space and Symbolic Power. Sociological Theory, 7(1), 14. doi:10.2307/202060Bouty, I. (2000). INTERPERSONAL AND INTERACTION INFLUENCES ON INFORMAL RESOURCE EXCHANGES BETWEEN R&D RESEARCHERS ACROSS ORGANIZATIONAL BOUNDARIES. Academy of Management Journal, 43(1), 50-65. doi:10.2307/1556385Bozeman, B., & Corley, E. (2004). Scientists’ collaboration strategies: implications for scientific and technical human capital. Research Policy, 33(4), 599-616. doi:10.1016/j.respol.2004.01.008Bozeman, B., & Gaughan, M. (2011). How do men and women differ in research collaborations? An analysis of the collaborative motives and strategies of academic researchers. Research Policy, 40(10), 1393-1402. doi:10.1016/j.respol.2011.07.002Bozeman, B., & Rogers, J. D. (2002). A churn model of scientific knowledge value: Internet researchers as a knowledge value collective. Research Policy, 31(5), 769-794. doi:10.1016/s0048-7333(01)00146-9Bozeman, B., Dietz, J. S., & Gaughan, M. (2001). Scientific and technical human capital: an alternative model for research evaluation. International Journal of Technology Management, 22(7/8), 716. doi:10.1504/ijtm.2001.002988Brass, D. J. (1985). MEN’S AND WOMEN’S NETWORKS: A STUDY OF INTERACTION PATTERNS AND INFLUENCE IN AN ORGANIZATION. Academy of Management Journal, 28(2), 327-343. doi:10.2307/256204Chompalov, I., Genuth, J., & Shrum, W. (2002). The organization of scientific collaborations. Research Policy, 31(5), 749-767. doi:10.1016/s0048-7333(01)00145-7Cook, C., Heath, F., & Thompson, R. L. (2000). A Meta-Analysis of Response Rates in Web- or Internet-Based Surveys. Educational and Psychological Measurement, 60(6), 821-836. doi:10.1177/00131640021970934Durbin, S. (2010). Creating Knowledge through Networks: a Gender Perspective. Gender, Work & Organization, 18(1), 90-112. doi:10.1111/j.1468-0432.2010.00536.xEcklund, E. H., Lincoln, A. E., & Tansey, C. (2012). Gender Segregation in Elite Academic Science. Gender & Society, 26(5), 693-717. doi:10.1177/0891243212451904Ensign, P. C. (2009). Knowledge Sharing among Scientists. doi:10.1057/9780230617131Etzkowitz, H., Kemelgor, C., & Uzzi, B. (2000). Athena Unbound. doi:10.1017/cbo9780511541414Flyvbjerg, B. (2001). Making Social Science Matter. doi:10.1017/cbo9780511810503FOX, M. F. (2001). WOMEN, SCIENCE, AND ACADEMIA. Gender & Society, 15(5), 654-666. doi:10.1177/089124301015005002Fox, M. F. (2010). Women and Men Faculty in Academic Science and Engineering: Social-Organizational Indicators and Implications. American Behavioral Scientist, 53(7), 997-1012. doi:10.1177/0002764209356234Fox, M. F., & Stephan, P. E. (2001). Careers of Young Scientists: Social Studies of Science, 31(1), 109-122. doi:10.1177/030631201031001006Fox, M. F., Sonnert, G., & Nikiforova, I. (2009). Successful Programs for Undergraduate Women in Science and Engineering: Adapting versus Adopting the Institutional Environment. Research in Higher Education, 50(4), 333-353. doi:10.1007/s11162-009-9120-4Friedkin, N. (1980). A test of structural features of granovetter’s strength of weak ties theory. Social Networks, 2(4), 411-422. doi:10.1016/0378-8733(80)90006-4Gaughan, M. (2005). Introduction to the Symposium: Women in Science. The Journal of Technology Transfer, 30(4), 339-342. doi:10.1007/s10961-005-2579-zGaughan, M., & Corley, E. A. (2010). Science faculty at US research universities: The impacts of university research center-affiliation and gender on industrial activities. Technovation, 30(3), 215-222. doi:10.1016/j.technovation.2009.12.001Granovetter, M. S. (1973). The Strength of Weak Ties. American Journal of Sociology, 78(6), 1360-1380. doi:10.1086/225469Hansen, M. T. (1999). The Search-Transfer Problem: The Role of Weak Ties in Sharing Knowledge across Organization Subunits. Administrative Science Quarterly, 44(1), 82. doi:10.2307/2667032Ibarra, H. (1992). Homophily and Differential Returns: Sex Differences in Network Structure and Access in an Advertising Firm. Administrative Science Quarterly, 37(3), 422. doi:10.2307/2393451Islam, N., & Miyazaki, K. (2009). Nanotechnology innovation system: Understanding hidden dynamics of nanoscience fusion trajectories. Technological Forecasting and Social Change, 76(1), 128-140. doi:10.1016/j.techfore.2008.03.021Katz, J. S., & Martin, B. R. (1997). What is research collaboration? Research Policy, 26(1), 1-18. doi:10.1016/s0048-7333(96)00917-1Koch, N. S., & Emrey, J. A. . (2001). The Internet and Opinion Measurement: Surveying Marginalized Populations. Social Science Quarterly, 82(1), 131-138. doi:10.1111/0038-4941.00012Kyvik, S., & Teigen, M. (1996). Child Care, Research Collaboration, and Gender Differences in Scientific Productivity. Science, Technology, & Human Values, 21(1), 54-71. doi:10.1177/016224399602100103Lee, S., & Bozeman, B. (2005). The Impact of Research Collaboration on Scientific Productivity. Social Studies of Science, 35(5), 673-702. doi:10.1177/0306312705052359Levin, D. Z., & Cross, R. (2004). The Strength of Weak Ties You Can Trust: The Mediating Role of Trust in Effective Knowledge Transfer. Management Science, 50(11), 1477-1490. doi:10.1287/mnsc.1030.0136Lin, N. (2001). Social Capital. doi:10.1017/cbo9780511815447McFadyen, M. A., & Cannella, A. A. (2004). SOCIAL CAPITAL AND KNOWLEDGE CREATION: DIMINISHING RETURNS OF THE NUMBER AND STRENGTH OF EXCHANGE RELATIONSHIPS. Academy of Management Journal, 47(5), 735-746. doi:10.2307/20159615McFadyen, M. A., Semadeni, M., & Cannella, A. A. (2009). Value of Strong Ties to Disconnected Others: Examining Knowledge Creation in Biomedicine. Organization Science, 20(3), 552-564. doi:10.1287/orsc.1080.0388Manfreda, K. L., Bosnjak, M., Berzelak, J., Haas, I., & Vehovar, V. (2008). Web Surveys versus other Survey Modes: A Meta-Analysis Comparing Response Rates. International Journal of Market Research, 50(1), 79-104. doi:10.1177/147078530805000107Marsden, P. V., & Campbell, K. E. (1984). Measuring Tie Strength. Social Forces, 63(2), 482. doi:10.2307/2579058Mason, M. A., & Ekman, E. M. (2007). Mothers on the Fast TrackHow a New Generation Can Balance Family and Careers. doi:10.1093/acprof:oso/9780195182675.001.0001Mayer, R. C., Davis, J. H., & Schoorman, F. D. (1995). An Integrative Model Of Organizational Trust. Academy of Management Review, 20(3), 709-734. doi:10.5465/amr.1995.9508080335Nahapiet, J., & Ghoshal, S. (1998). Social Capital, Intellectual Capital, and the Organizational Advantage. Academy of Management Review, 23(2), 242-266. doi:10.5465/amr.1998.533225Oliver, A. L., & Liebeskind, J. P. (1997). Three Levels of Networking for Sourcing Intellectual Capital in Biotechnology. International Studies of Management & Organization, 27(4), 76-103. doi:10.1080/00208825.1997.11656719Podolny, J. M., & Baron, J. N. (1997). Resources and Relationships: Social Networks and Mobility in the Workplace. American Sociological Review, 62(5), 673. doi:10.2307/2657354Rhoton, L. A. (2011). Distancing as a Gendered Barrier. Gender & Society, 25(6), 696-716. doi:10.1177/0891243211422717Rothstein, M. G., & Davey, L. M. (1995). Gender differences in network relationships in academia. Women in Management Review, 10(6), 20-25. doi:10.1108/09649429510095999Rowley, T., Behrens, D., & Krackhardt, D. (2000). Redundant governance structures: an analysis of structural and relational embeddedness in the steel and semiconductor industries. Strategic Management Journal, 21(3), 369-386. doi:10.1002/(sici)1097-0266(200003)21:33.0.co;2-mSCOTT, D. B. (1996). SHATTERING THE INSTRUMENTAL-EXPRESSIVE MYTH. Gender & Society, 10(3), 232-247. doi:10.1177/089124396010003003Shapin, S. (1994). A Social History of Truth. doi:10.7208/chicago/9780226148847.001.0001Shrum, W., Chompalov, I., & Genuth, J. (2001). Trust, Conflict and Performance in Scientific Collaborations. Social Studies of Science, 31(5), 681-730. doi:10.1177/030631201031005002Smith-Doerr, L. (2004). Flexibility and Fairness: Effects of the Network Form of Organization on Gender Equity in Life Science Careers. Sociological Perspectives, 47(1), 25-54. doi:10.1525/sop.2004.47.1.25Stix, G. (2001). Little Big Science. Scientific American, 285(3), 32-37. doi:10.1038/scientificamerican0901-32Uzzi, B. (1996). The Sources and Consequences of Embeddedness for the Economic Performance of Organizations: The Network Effect. American Sociological Review, 61(4), 674. doi:10.2307/2096399Uzzi, B. (1997). Social Structure and Competition in Interfirm Networks: The Paradox of Embeddedness. Administrative Science Quarterly, 42(1), 35. doi:10.2307/2393808Vinck, D. (2010). The Sociology of Scientific Work. doi:10.4337/9781849807197Fan, W., & Yan, Z. (2010). Factors affecting response rates of the web survey: A systematic review. Computers in Human Behavior, 26(2), 132-139. doi:10.1016/j.chb.2009.10.015Ziman, J. M. (Ed.). (1994). Prometheus Bound. doi:10.1017/cbo978051158506

    Understanding how education/support groups help lone mothers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lone-mother led families are at increased risk of psychosocial disadvantage, social isolation and mental health morbidity. Community-based programs are more accessible for families seeking assistance. We examine the experiences of eight lone mothers participating in a larger randomized controlled trial (RCT) of a community-based education/support group program using mixed methods.</p> <p>Methods</p> <p>A purposeful sample of eight mothers participating in the intervention arm of an RCT of community-based support/education groups was selected for the qualitative study. Individual interviews asked mothers about themselves and their relationships with their children before and after the group. Interviews were taped, transcribed and content analysis was used to code and interpret the data. Quantitative data collected in the RCT were used to describe these mothers.</p> <p>Results</p> <p>Mothers participating in the RCT and qualitative study experienced multiple difficulties, including financial and mood problems. These mothers reported that before participating in the group, they had shared experiences of social isolation, stigma, a sense of failure, poor relationships with their children and difficulties with financial management. After the group, mothers identified improved self-esteem, support from other mothers, improved parenting skills and improved communication with their children as outcomes of group participation.</p> <p>Conclusions</p> <p>The qualitative data revealed mothers' perceptions of specific areas that improved by participating in the group. The utility of complementary information provided by qualitative and quantitative methods in understanding program impact, as well as the need for broader assistance is noted.</p

    Animal Perception of Seasonal Thresholds: Changes in Elephant Movement in Relation to Rainfall Patterns

    Get PDF
    Background: The identification of temporal thresholds or shifts in animal movement informs ecologists of changes in an animal\u2019s behaviour, which contributes to an understanding of species\u2019 responses in different environments. In African savannas, rainfall, temperature and primary productivity influence the movements of large herbivores and drive changes at different scales. Here, we developed a novel approach to define seasonal shifts in movement behaviour by examining the movements of a highly mobile herbivore (elephant; Loxodonta africana), in relation to local and regional rainfall patterns. Methodology/Principal Findings: We used speed to determine movement changes of between 8 and 14 GPS-collared elephant cows, grouped into five spatial clusters, in Kruger National Park, South Africa. To detect broad-scale patterns of movement, we ran a three-year daily time-series model for each individual (2007\u20132009). Piecewise regression models provided the best fit for elephant movement, which exhibited a segmented, waveform pattern over time. Major breakpoints in speed occurred at the end of the dry and wet seasons of each year. During the dry season, female elephant are constrained by limited forage and thus the distances they cover are shorter and less variable. Despite the inter-annual variability of rainfall, speed breakpoints were strongly correlated with both local and regional rainfall breakpoints across all three years. Thus, at a multi-year scale, rainfall patterns significantly affect the movements of elephant. The variability of both speed and rainfall breakpoints across different years highlights the need for an objective definition of seasonal boundaries. Conclusions/Significance: By using objective criteria to determine behavioural shifts, we identified a biologically meaningful indicator of major changes in animal behaviour in different years. We recommend the use of such criteria, from an animal\u2019s perspective, for delineating seasons or other extrinsic shifts in ecological studies, rather than arbitrarily fixed definitions based on convention or common practice

    Spectrotemporal Processing in Spectral Tuning Modules of Cat Primary Auditory Cortex

    Get PDF
    Spectral integration properties show topographical order in cat primary auditory cortex (AI). Along the iso-frequency domain, regions with predominantly narrowly tuned (NT) neurons are segregated from regions with more broadly tuned (BT) neurons, forming distinct processing modules. Despite their prominent spatial segregation, spectrotemporal processing has not been compared for these regions. We identified these NT and BT regions with broad-band ripple stimuli and characterized processing differences between them using both spectrotemporal receptive fields (STRFs) and nonlinear stimulus/firing rate transformations. The durations of STRF excitatory and inhibitory subfields were shorter and the best temporal modulation frequencies were higher for BT neurons than for NT neurons. For NT neurons, the bandwidth of excitatory and inhibitory subfields was matched, whereas for BT neurons it was not. Phase locking and feature selectivity were higher for NT neurons. Properties of the nonlinearities showed only slight differences across the bandwidth modules. These results indicate fundamental differences in spectrotemporal preferences - and thus distinct physiological functions - for neurons in BT and NT spectral integration modules. However, some global processing aspects, such as spectrotemporal interactions and nonlinear input/output behavior, appear to be similar for both neuronal subgroups. The findings suggest that spectral integration modules in AI differ in what specific stimulus aspects are processed, but they are similar in the manner in which stimulus information is processed

    A Comparison of Phylogenetic Network Methods Using Computer Simulation

    Get PDF
    Background: We present a series of simulation studies that explore the relative performance of several phylogenetic network approaches (statistical parsimony, split decomposition, union of maximum parsimony trees, neighbor-net, simulated history recombination upper bound, median-joining, reduced median joining and minimum spanning network) compared to standard tree approaches, (neighbor-joining and maximum parsimony) in the presence and absence of recombination. Principal Findings: In the absence of recombination, all methods recovered the correct topology and branch lengths nearly all of the time when the substitution rate was low, except for minimum spanning networks, which did considerably worse. At a higher substitution rate, maximum parsimony and union of maximum parsimony trees were the most accurate. With recombination, the ability to infer the correct topology was halved for all methods and no method could accurately estimate branch lengths. Conclusions: Our results highlight the need for more accurate phylogenetic network methods and the importance of detecting and accounting for recombination in phylogenetic studies. Furthermore, we provide useful information for choosing a network algorithm and a framework in which to evaluate improvements to existing methods and nove

    Relevance of Stress and Female Sex Hormones for Emotion and Cognition

    Get PDF
    There are clear sex differences in incidence and onset of stress-related and other psychiatric disorders in humans. Yet, rodent models for psychiatric disorders are predominantly based on male animals. The strongest argument for not using female rodents is their estrous cycle and the fluctuating sex hormones per phase which multiplies the number of animals to be tested. Here, we will discuss studies focused on sex differences in emotionality and cognitive abilities in experimental conditions with and without stress. First, female sex hormones such as estrogens and progesterone affect emotions and cognition, contributing to sex differences in behavior. Second, females respond differently to stress than males which might be related to the phase of the estrous cycle. For example, female rats and mice express less anxiety than males in a novel environment. Proestrus females are less anxious than females in the other estrous phases. Third, males perform in spatial tasks superior to females. However, while stress impairs spatial memory in males, females improve their spatial abilities, depending on the task and kind of stressor. We conclude that the differences in emotion, cognition and responses to stress between males and females over the different phases of the estrous cycle should be used in animal models for stress-related psychiatric disorders
    corecore