59 research outputs found
The Opportunistic Pathogen Propionibacterium acnes: Insights into Typing, Human Disease, Clonal Diversification and CAMP Factor Evolution
We previously described a Multilocus Sequence Typing (MLST) scheme based on eight genes that facilitates population
genetic and evolutionary analysis of P. acnes. While MLST is a portable method for unambiguous typing of bacteria, it is
expensive and labour intensive. Against this background, we now describe a refined version of this scheme based on two
housekeeping (aroE; guaA) and two putative virulence (tly; camp2) genes (MLST4) that correctly predicted the phylogroup
(IA1, IA2, IB, IC, II, III), clonal complex (CC) and sequence type (ST) (novel or described) status for 91% isolates (n = 372) via
cross-referencing of the four gene allelic profiles to the full eight gene versions available in the MLST database (http://
pubmlst.org/pacnes/). Even in the small number of cases where specific STs were not completely resolved, the MLST4
method still correctly determined phylogroup and CC membership. Examination of nucleotide changes within all the MLST
loci provides evidence that point mutations generate new alleles approximately 1.5 times as frequently as recombination;
although the latter still plays an important role in the bacterium’s evolution. The secreted/cell-associated ‘virulence’ factors
tly and camp2 show no clear evidence of episodic or pervasive positive selection and have diversified at a rate similar to
housekeeping loci. The co-evolution of these genes with the core genome might also indicate a role in commensal/normal
existence constraining their diversity and preventing their loss from the P. acnes population. The possibility that members of
the expanded CAMP factor protein family, including camp2, may have been lost from other propionibacteria, but not P.
acnes, would further argue for a possible role in niche/host adaption leading to their retention within the genome. These
evolutionary insights may prove important for discussions surrounding camp2 as an immunotherapy target for acne, and
the effect such treatments may have on commensal lineages
Predicting Prokaryotic Ecological Niches Using Genome Sequence Analysis
Automated DNA sequencing technology is so rapid that analysis has become the rate-limiting step. Hundreds of prokaryotic genome sequences are publicly available, with new genomes uploaded at the rate of approximately 20 per month. As a result, this growing body of genome sequences will include microorganisms not previously identified, isolated, or observed. We hypothesize that evolutionary pressure exerted by an ecological niche selects for a similar genetic repertoire in those prokaryotes that occupy the same niche, and that this is due to both vertical and horizontal transmission. To test this, we have developed a novel method to classify prokaryotes, by calculating their Pfam protein domain distributions and clustering them with all other sequenced prokaryotic species. Clusters of organisms are visualized in two dimensions as ‘mountains’ on a topological map. When compared to a phylogenetic map constructed using 16S rRNA, this map more accurately clusters prokaryotes according to functional and environmental attributes. We demonstrate the ability of this map, which we term a “niche map”, to cluster according to ecological niche both quantitatively and qualitatively, and propose that this method be used to associate uncharacterized prokaryotes with their ecological niche as a means of predicting their functional role directly from their genome sequence
Genomes of the Most Dangerous Epidemic Bacteria Have a Virulence Repertoire Characterized by Fewer Genes but More Toxin-Antitoxin Modules
We conducted a comparative genomic study based on a neutral approach to identify genome specificities associated with the virulence capacity of pathogenic bacteria. We also determined whether virulence is dictated by rules, or if it is the result of individual evolutionary histories. We systematically compared the genomes of the 12 most dangerous pandemic bacteria for humans ("bad bugs") to their closest non-epidemic related species ("controls").We found several significantly different features in the "bad bugs", one of which was a smaller genome that likely resulted from a degraded recombination and repair system. The 10 Cluster of Orthologous Group (COG) functional categories revealed a significantly smaller number of genes in the "bad bugs", which lacked mostly transcription, signal transduction mechanisms, cell motility, energy production and conversion, and metabolic and regulatory functions. A few genes were identified as virulence factors, including secretion system proteins. Five "bad bugs" showed a greater number of poly (A) tails compared to the controls, whereas an elevated number of poly (A) tails was found to be strongly correlated to a low GC% content. The "bad bugs" had fewer tandem repeat sequences compared to controls. Moreover, the results obtained from a principal component analysis (PCA) showed that the "bad bugs" had surprisingly more toxin-antitoxin modules than did the controls.We conclude that pathogenic capacity is not the result of "virulence factors" but is the outcome of a virulent gene repertoire resulting from reduced genome repertoires. Toxin-antitoxin systems could participate in the virulence repertoire, but they may have developed independently of selfish evolution
An exceptional horizontal gene transfer in plastids: gene replacement by a distant bacterial paralog and evidence that haptophyte and cryptophyte plastids are sisters
BACKGROUND: Horizontal gene transfer (HGT) to the plant mitochondrial genome has recently been shown to occur at a surprisingly high rate; however, little evidence has been found for HGT to the plastid genome, despite extensive sequencing. In this study, we analyzed all genes from sequenced plastid genomes to unearth any neglected cases of HGT and to obtain a measure of the overall extent of HGT to the plastid. RESULTS: Although several genes gave strongly supported conflicting trees under certain conditions, we are confident of HGT in only a single case beyond the rubisco HGT already reported. Most of the conflicts involved near neighbors connected by long branches (e.g. red algae and their secondary hosts), where phylogenetic methods are prone to mislead. However, three genes – clpP, ycf2, and rpl36 – provided strong support for taxa moving far from their organismal position. Further taxon sampling of clpP and ycf2 resulted in rejection of HGT due to long-branch attraction and a serious error in the published plastid genome sequence of Oenothera elata, respectively. A single new case, a bacterial rpl36 gene transferred into the ancestor of the cryptophyte and haptophyte plastids, appears to be a true HGT event. Interestingly, this rpl36 gene is a distantly related paralog of the rpl36 type found in other plastids and most eubacteria. Moreover, the transferred gene has physically replaced the native rpl36 gene, yet flanking genes and intergenic regions show no sign of HGT. This suggests that gene replacement somehow occurred by recombination at the very ends of rpl36, without the level and length of similarity normally expected to support recombination. CONCLUSION: The rpl36 HGT discovered in this study is of considerable interest in terms of both molecular mechanism and phylogeny. The plastid acquisition of a bacterial rpl36 gene via HGT provides the first strong evidence for a sister-group relationship between haptophyte and cryptophyte plastids to the exclusion of heterokont and alveolate plastids. Moreover, the bacterial gene has replaced the native plastid rpl36 gene by an uncertain mechanism that appears inconsistent with existing models for the recombinational basis of gene conversion
A configurational and conformational study of aframodial and its diasteriomers via experimental and theoretical VA and VCD spectroscopies
In thiswork we present the experimental and theoretical vibrational absorption (VA) and the theoretical vibrational circular dichroism (VCD) spectra for aframodial. In addition, we present the theoretical VA and VCD spectra for the diasteriomers of aframodial. Aframodial has four chiral centers and hence has 24 = 16 diasteriomers, which occur in eight pairs of enantiomers. In addition to the four chiral centers, there is an additional chirality due to the helicity of the entire molecule, which we show by presenting 12 configurations of the 5S,8S,9R,10S enantiomer of aframodial. The VCD spectra for the diasteriomers and the 12 configurations of one enantiomer are shown to be very sensitive not only to the local stereochemistry at each chiral center, but in addition, to the helicity of the entire molecule. Here one must be careful in analyzing the signs of the VCD bands due to the ?non-chiral? chromophores in themolecule, since one has two contributions; one due to the inherent chirality at the four chiral centers, and one due to the chirality of the side chain groups in specific conformers, that is, its helicity. Theoretical simulations for various levels of theory are compared to the experimental VA recorded to date. The VCD spectra simulations are presented, but no experimental VCD and Raman spectra have been reported to date, though some preliminary VCD measurements have been made in Stephens? lab in Los Angeles. The flexible side chain is proposed to be responsible for the small size of the VCD spectra of this molecule, even though the chiral part of the molecule is very rigid and has four chiral centers. In addition to VCD and Raman measurements, Raman optical activity (ROA) measurementswould be very enlightening, as in many cases bands which areweak in both theVAand VCD, may be large in the Raman and/orROAspectra. The feasibility of using vibrational spectroscopy tomonitor biological structure, function and activity is a worthy goal, but this work shows that a careful theoretical analysis is also required, if one is to fully utilize and understand the experimental results. The reliability, reproduceability and uniqueness of the vibrational spectroscopic experiments and the information which can be gained from them is discussed, as well as the details of the computation of VA, VCD and Raman (and ROA) spectroscopy for molecules of the complexity of aframodial, which have multiple chiral centers and flexible side chains
DIAGNOSIS OF URINARY BLADDER RUPTURE USING ULTRASOUND CONTRAST CYSTOGRAPHY: IN VITRO MODEL AND TWO CASE-HISTORY REPORTS
Distinct aspects of neuronal differentiation encoded by frequency of spontaneous Ca2+ transients
- …
