32 research outputs found
Tracing Water Sources of Terrestrial Animal Populations with Stable Isotopes: Laboratory Tests with Crickets and Spiders
Fluxes of carbon, nitrogen, and water between ecosystem components and organisms have great impacts across levels of biological organization. Although much progress has been made in tracing carbon and nitrogen, difficulty remains in tracing water sources from the ecosystem to animals and among animals (the “water web”). Naturally occurring, non-radioactive isotopes of hydrogen and oxygen in water provide a potential method for tracing water sources. However, using this approach for terrestrial animals is complicated by a change in water isotopes within the body due to differences in activity of heavy and light isotopes during cuticular and transpiratory water losses. Here we present a technique to use stable water isotopes to estimate the mean mix of water sources in a population by sampling a group of sympatric animals over time. Strong correlations between H and O isotopes in the body water of animals collected over time provide linear patterns of enrichment that can be used to predict a mean mix of water sources useful in standard mixing models to determine relative source contribution. Multiple temperature and humidity treatment levels do not greatly alter these relationships, thus having little effect on our ability to estimate this population-level mix of water sources. We show evidence for the validity of using multiple samples of animal body water, collected across time, to estimate the isotopic mix of water sources in a population and more accurately trace water sources. The ability to use isotopes to document patterns of animal water use should be a great asset to biologists globally, especially those studying drylands, droughts, streamside areas, irrigated landscapes, and the effects of climate change
Elucidating the Role of the Complement Control Protein in Monkeypox Pathogenicity
Monkeypox virus (MPXV) causes a smallpox-like disease in humans. Clinical and epidemiological studies provide evidence of pathogenicity differences between two geographically distinct monkeypox virus clades: the West African and Congo Basin. Genomic analysis of strains from both clades identified a ∼10 kbp deletion in the less virulent West African isolates sequenced to date. One absent open reading frame encodes the monkeypox virus homologue of the complement control protein (CCP). This modulatory protein prevents the initiation of both the classical and alternative pathways of complement activation. In monkeypox virus, CCP, also known as MOPICE, is a ∼24 kDa secretory protein with sequence homology to this superfamily of proteins. Here we investigate CCP expression and its role in monkeypox virulence and pathogenesis. CCP was incorporated into the West African strain and removed from the Congo Basin strain by homologous recombination. CCP expression phenotypes were confirmed for both wild type and recombinant monkeypox viruses and CCP activity was confirmed using a C4b binding assay. To characterize the disease, prairie dogs were intranasally infected and disease progression was monitored for 30 days. Removal of CCP from the Congo Basin strain reduced monkeypox disease morbidity and mortality, but did not significantly decrease viral load. The inclusion of CCP in the West African strain produced changes in disease manifestation, but had no apparent effect on disease-associated mortality. This study identifies CCP as an important immuno-modulatory protein in monkeypox pathogenesis but not solely responsible for the increased virulence seen within the Congo Basin clade of monkeypox virus
Baby Business: a randomised controlled trial of a universal parenting program that aims to prevent early infant sleep and cry problems and associated parental depression
<p>Abstract</p> <p>Background</p> <p>Infant crying and sleep problems (e.g. frequent night waking, difficulties settling to sleep) each affect up to 30% of infants and often co-exist. They are costly to manage and associated with adverse outcomes including postnatal depression symptoms, early weaning from breast milk, and later child behaviour problems. Preventing such problems could improve these adverse outcomes and reduce costs to families and the health care system. Anticipatory guidance-i.e. providing parents with information about normal infant sleep and cry patterns, ways to encourage self-settling in infants, and ways to develop feeding and settling routines <it>before </it>the onset of problems-could prevent such problems. This paper outlines the protocol for our study which aims to test an anticipatory guidance approach.</p> <p>Methods/Design</p> <p>750 families from four Local Government Areas in Melbourne, Australia have been randomised to receive the <it>Baby Business </it>program (intervention group) or usual care (control group) offered by health services. The <it>Baby Business </it>program provides parents with information about infant sleep and crying via a DVD and booklet (mailed soon after birth), telephone consultation (at infant age 6-8 weeks) and parent group session (at infant age 12 weeks). All English speaking parents of healthy newborn infants born at > 32 weeks gestation and referred by their maternal and child health nurse at their first post partum home visit (day 7-10 postpartum), are eligible. The primary outcome is parent report of infant night time sleep as a problem at four months of age and secondary outcomes include parent report of infant daytime sleep or crying as a problem, mean duration of infant sleep and crying/24 hours, parental depression symptoms, parent sleep quality and quantity and health service use. Data will be collected at two weeks (baseline), four months and six months of age. An economic evaluation using a cost-consequences approach will, from a societal perspective, compare costs and health outcomes between the intervention and control groups.</p> <p>Discussion</p> <p>To our knowledge this is the first randomised controlled trial of a program which aims to prevent both infant sleeping and crying problems and associated postnatal depression symptoms. If effective, it could offer an important public health prevention approach to these common, distressing problems.</p> <p>Trial registration number</p> <p>ISRCTN: <a href="http://www.controlled-trials.com/ISRCTN63834603">ISRCTN63834603</a></p
Simian Varicella Virus Infection of Rhesus Macaques Recapitulates Essential Features of Varicella Zoster Virus Infection in Humans
Simian varicella virus (SVV), the etiologic agent of naturally occurring varicella in primates, is genetically and antigenically closely related to human varicella zoster virus (VZV). Early attempts to develop a model of VZV pathogenesis and latency in nonhuman primates (NHP) resulted in persistent infection. More recent models successfully produced latency; however, only a minority of monkeys became viremic and seroconverted. Thus, previous NHP models were not ideally suited to analyze the immune response to SVV during acute infection and the transition to latency. Here, we show for the first time that intrabronchial inoculation of rhesus macaques with SVV closely mimics naturally occurring varicella (chickenpox) in humans. Infected monkeys developed varicella and viremia that resolved 21 days after infection. Months later, viral DNA was detected only in ganglia and not in non-ganglionic tissues. Like VZV latency in human ganglia, transcripts corresponding to SVV ORFs 21, 62, 63 and 66, but not ORF 40, were detected by RT-PCR. In addition, as described for VZV, SVV ORF 63 protein was detected in the cytoplasm of neurons in latently infected monkey ganglia by immunohistochemistry. We also present the first in depth analysis of the immune response to SVV. Infected animals produced a strong humoral and cell-mediated immune response to SVV, as assessed by immunohistology, serology and flow cytometry. Intrabronchial inoculation of rhesus macaques with SVV provides a novel model to analyze viral and immunological mechanisms of VZV latency and reactivation
Frequent and Recent Human Acquisition of Simian Foamy Viruses Through Apes' Bites in Central Africa
Human infection by simian foamy viruses (SFV) can be acquired by persons occupationally exposed to non-human primates (NHP) or in natural settings. This study aimed at getting better knowledge on SFV transmission dynamics, risk factors for such a zoonotic infection and, searching for intra-familial dissemination and the level of peripheral blood (pro)viral loads in infected individuals. We studied 1,321 people from the general adult population (mean age 49 yrs, 640 women and 681 men) and 198 individuals, mostly men, all of whom had encountered a NHP with a resulting bite or scratch. All of these, either Pygmies (436) or Bantus (1085) live in villages in South Cameroon. A specific SFV Western blot was used and two nested PCRs (polymerase, and LTR) were done on all the positive/borderline samples by serology. In the general population, 2/1,321 (0.2%) persons were found to be infected. In the second group, 37/198 (18.6%) persons were SFV positive. They were mostly infected by apes (37/39) FV (mainly gorilla). Infection by monkey FV was less frequent (2/39). The viral origin of the amplified sequences matched with the history reported by the hunters, most of which (83%) are aged 20 to 40 years and acquired the infection during the last twenty years. The (pro)viral load in 33 individuals infected by a gorilla FV was quite low (<1 to 145 copies per 105 cells) in the peripheral blood leucocytes. Of the 30 wives and 12 children from families of FV infected persons, only one woman was seropositive in WB without subsequent viral DNA amplification. We demonstrate a high level of recent transmission of SFVs to humans in natural settings specifically following severe gorilla bites during hunting activities. The virus was found to persist over several years, with low SFV loads in infected persons. Secondary transmission remains an open question
CD200 receptor restriction of myeloid cell responses antagonizes antiviral immunity and facilitates cytomegalovirus persistence within mucosal tissue
CD200 receptor (CD200R) negatively regulates peripheral and mucosal innate immune responses. Viruses, including herpesviruses, have acquired functional CD200 orthologs, implying that viral exploitation of this pathway is evolutionary advantageous. However, the role that CD200R signaling plays during herpesvirus infection in vivo requires clarification. Utilizing the murine cytomegalovirus (MCMV) model, we demonstrate that CD200R facilitates virus persistence within mucosal tissue. Specifically, MCMV infection of CD200R-deficient mice (CD200R-/-) elicited heightened mucosal virus-specific CD4 T cell responses that restricted virus persistence in the salivary glands. CD200R did not directly inhibit lymphocyte effector function. Instead, CD200R-/- mice exhibited enhanced APC accumulation that in the mucosa was a consequence of elevated cellular proliferation. Although MCMV does not encode an obvious CD200 homolog, productive replication in macrophages induced expression of cellular CD200. CD200 from hematopoietic and non-hematopoietic cells contributed independently to suppression of antiviral control in vivo. These results highlight the CD200-CD200R pathway as an important regulator of antiviral immunity during cytomegalovirus infection that is exploited by MCMV to establish chronicity within mucosal tissue
Assessing nest building in mice.
For small rodents, nests are important in heat conservation as well as reproduction and shelter. Nesting is easily measured in the home cages of mice, particularly with the advent of pressed cotton materials. The mice first shred the tightly packed material, then arrange it into a nest. Published studies have often used materials such as hay, twine or tissues, sometimes preshredded, and have assigned scores of the quality of the resulting nest with rather rudimentary rating scales; e.g., 0, no nest; 1, flat nest; 2, nest covering the mouse. The protocol described here uses pressed cotton squares and a definitive 5-point nest-rating scale. Any unshredded material left after a bout of nesting can also be weighed, providing a semi-independent objective assay of nesting ability. Nesting has been shown to be sensitive to brain lesions, pharmacological agents and genetic mutations. This is a simple, cheap and easily done test that, along with other tests of species-typical behavior, is a sensitive assay for identifying previously unknown behavioral phenotypes. The test needs to be done overnight, but it should take no more than 5 minutes to set up plus 1 minute to assess one nest and weigh the untorn residue
Infectious delivery of Alphaherpesvirus bacterial artificial chromosomes
Bacterial artifi cial chromosomes (BACs) can accommodate and stably propagate the genomes of large DNA viruses in E. coli . As DNA virus genomes are often per se infectious upon transfection into mammalian cells, their cloning in BACs and easy modifi cation by homologous recombination in bacteria has become an important strategy to investigate the functions of individual virus genes. This chapter describes a strategy to clone the genomes of viruses of the Alphaherpesvirinae subfamily within the family of the Herpesviridae , which is a group of large DNA viruses that can establish both lytic and latent infections in most animal species including humans. The cloning strategy includes the following steps: (1) Construction of a transfer plasmid that contains the BAC backbone with selection and screening markers, and targeting sequences which support homologous recombination between the transfer plasmid and the alphaherpesvirus genome. (2) Introduction of the transfer plasmid sequences into the alphaherpesvirus genome via homologous recombination in mammalian cells. (3) Isolation of recombinant virus genomes containing the BAC backbone sequences from infected mammalian cells and electroporation into E. coli . (4) Preparation of infectious BAC DNA from bacterial cultures and transfection into mammalian cells. (5) Isolation and characterization of progeny virus
