506 research outputs found
Sexual conflict over remating interval is modulated by the sex peptide pathway
Sexual conflict, in which the evolutionary interests of males and females diverge, shapes the evolution of reproductive systems across diverse taxa. Here we used the fruit fly to study sexual conflict in natural, three-way interactions comprising a female, her current and previous mates. We manipulated the potential for sexual conflict by using sex peptide receptor (SPR) null females and by varying remating from 3 to 48h, a period during which natural rematings frequently occur. SPR-lacking females do not respond to sex peptide transferred during mating and maintain virgin levels of high receptivity and low fecundity. In the absence of SPR there was a convergence of fitness interests, with all individuals gaining highest productivity at 5h remating. This suggests that the expression of sexual conflict was reduced. We observed an unexpected second male-specific advantage to early remating, resulting from an increase in the efficiency of second male sperm use. This early window of opportunity for exploitation by second males depended on the presence of SPR. The results suggest that the sex peptide pathway can modulate the expression of sexual conflict in this system, and show how variation in the selective forces that shape conflict and co-operation can be maintained
Recommended from our members
The diet-body offset in human nitrogen isotopic values: a controlled dietary study
The ‘trophic level enrichment’ between diet and body results in an overall increase in nitrogen isotopic values as the food chain is ascended. Quantifying the diet–body Δ15N spacing has proved difficult, particularly for humans. The value is usually assumed to be +3-5‰ in the archaeological literature. We report here the first (to our knowledge) data from humans on isotopically known diets, comparing dietary intake and a body tissue sample, that of red blood cells. Samples were taken from 11 subjects on controlled diets for a 30-d period, where the controlled diets were designed to match each individual’s habitual diet, thus reducing problems with short-term changes in diet causing isotopic changes in the body pool.
The Δ15Ndiet-RBC was measured as +3.5‰. Using measured offsets from other studies, we estimate the human Δ15Ndiet-keratin as +5.0-5.3‰, which is in good agreement with values derived from the two other studies using individual diet records. We also estimate a value for Δ15Ndiet-collagen of ≈6‰, again in combination with measured offsets from other studies. This value is larger than usually assumed in palaeodietary studies, which suggests that the proportion of animal protein in prehistoric human diet may have often been overestimated in isotopic studies of palaeodiet
Optimizing the colour and fabric of targets for the control of the tsetse fly Glossina fuscipes fuscipes
Background:
Most cases of human African trypanosomiasis (HAT) start with a bite from one of the subspecies of Glossina fuscipes. Tsetse use a range of olfactory and visual stimuli to locate their hosts and this response can be exploited to lure tsetse to insecticide-treated targets thereby reducing transmission. To provide a rational basis for cost-effective designs of target, we undertook studies to identify the optimal target colour.
Methodology/Principal Findings:
On the Chamaunga islands of Lake Victoria , Kenya, studies were made of the numbers of G. fuscipes fuscipes attracted to targets consisting of a panel (25 cm square) of various coloured fabrics flanked by a panel (also 25 cm square) of fine black netting. Both panels were covered with an electrocuting grid to catch tsetse as they contacted the target. The reflectances of the 37 different-coloured cloth panels utilised in the study were measured spectrophotometrically. Catch was positively correlated with percentage reflectance at the blue (460 nm) wavelength and negatively correlated with reflectance at UV (360 nm) and green (520 nm) wavelengths. The best target was subjectively blue, with percentage reflectances of 3%, 29%, and 20% at 360 nm, 460 nm and 520 nm respectively. The worst target was also, subjectively, blue, but with high reflectances at UV (35% reflectance at 360 nm) wavelengths as well as blue (36% reflectance at 460 nm); the best low UV-reflecting blue caught 3× more tsetse than the high UV-reflecting blue.
Conclusions/Significance:
Insecticide-treated targets to control G. f. fuscipes should be blue with low reflectance in both the UV and green bands of the spectrum. Targets that are subjectively blue will perform poorly if they also reflect UV strongly. The selection of fabrics for targets should be guided by spectral analysis of the cloth across both the spectrum visible to humans and the UV region
Mixture models for analysis of melting temperature data
BackgroundIn addition to their use in detecting undesired real-time PCR products, melting temperatures are useful for detecting variations in the desired target sequences. Methodological improvements in recent years allow the generation of high-resolution melting-temperature (Tm) data. However, there is currently no convention on how to statistically analyze such high-resolution Tm data.ResultsMixture model analysis was applied to Tm data. Models were selected based on Akaike's information criterion. Mixture model analysis correctly identified categories in Tm data obtained for known plasmid targets. Using simulated data, we investigated the number of observations required for model construction. The precision of the reported mixing proportions from data fitted to a preconstructed model was also evaluated.ConclusionMixture model analysis of Tm data allows the minimum number of different sequences in a set of amplicons and their relative frequencies to be determined. This approach allows Tm data to be analyzed, classified, and compared in an unbiased manner.</p
Wolbachia in the flesh: symbiont intensities in germ-line and somatic tissues challenge the conventional view of Wolbachia transmission routes
Symbionts can substantially affect the evolution and ecology of their hosts. The investigation of the tissue-specific distribution of symbionts (tissue tropism) can provide important insight into host-symbiont interactions. Among other things, it can help to discern the importance of specific transmission routes and potential phenotypic effects. The intracellular bacterial symbiont Wolbachia has been described as the greatest ever panzootic, due to the wide array of arthropods that it infects. Being primarily vertically transmitted, it is expected that the transmission of Wolbachia would be enhanced by focusing infection in the reproductive tissues. In social insect hosts, this tropism would logically extend to reproductive rather than sterile castes, since the latter constitute a dead-end for vertically transmission. Here, we show that Wolbachia are not focused on reproductive tissues of eusocial insects, and that non-reproductive tissues of queens and workers of the ant Acromyrmex echinatior, harbour substantial infections. In particular, the comparatively high intensities of Wolbachia in the haemolymph, fat body, and faeces, suggest potential for horizontal transmission via parasitoids and the faecal-oral route, or a role for Wolbachia modulating the immune response of this host. It may be that somatic tissues and castes are not the evolutionary dead-end for Wolbachia that is commonly thought
The Cryptococcus neoformans transcriptome at the site of human meningitis.
Cryptococcus neoformans is the leading cause of fungal meningitis worldwide. Previous studies have characterized the cryptococcal transcriptome under various stress conditions, but a comprehensive profile of the C. neoformans transcriptome in the human host has not been attempted. Here, we extracted RNA from yeast cells taken directly from the cerebrospinal fluid (CSF) of two AIDS patients with cryptococcal meningitis prior to antifungal therapy. The patients were infected with strains of C. neoformans var. grubii of molecular type VNI and VNII. Using RNA-seq, we compared the transcriptional profiles of these strains under three environmental conditions (in vivo CSF, ex vivo CSF, and yeast extract-peptone-dextrose [YPD]). Although we identified a number of differentially expressed genes, single nucleotide variants, and novel genes that were unique to each strain, the overall expression patterns of the two strains were similar under the same environmental conditions. Specifically, yeast cells obtained directly from each patient's CSF were more metabolically active than cells that were incubated ex vivo in CSF. Compared with growth in YPD, some genes were identified as significantly upregulated in both in vivo and ex vivo CSF, and they were associated with genes previously recognized for contributing to pathogenicity. For example, genes with known stress response functions, such as RIM101, ENA1, and CFO1, were regulated similarly in the two clinical strains. Conversely, many genes that were differentially regulated between the two strains appeared to be transporters. These findings establish a platform for further studies of how this yeast survives and produces disease
Estimation of changes in the force of infection for intestinal and urogenital schistosomiasis in countries with Schistosomiasis Control Initiative-assisted programmes
The last decade has seen an expansion of national schistosomiasis control programmes in Africa based on large-scale preventative chemotherapy. In many areas this has resulted in considerable reductions in infection and morbidity levels in treated individuals. In this paper, we quantify changes in the force of infection (FOI), defined here as the per (human) host parasite establishment rate, to ascertain the impact on transmission of some of these programmes under the umbrella of the Schistosomiasis Control Initiative (SCI)
Differential regulation of a MYB transcription factor is correlated with transgenerational epigenetic inheritance of trichome density in Mimulus guttatus
This is the peer reviewed version of the following article: Scoville, A. G., Barnett, L. L., Bodbyl-Roels, S., Kelly, J. K. and Hileman, L. C. (2011), Differential regulation of a MYB transcription factor is correlated with transgenerational epigenetic inheritance of trichome density in Mimulus guttatus. New Phytologist, 191: 251–263. doi:10.1111/j.1469-8137.2011.03656.x, which has been published in final form at http://doi.org/10.1111/j.1469-8137.2011.03656.x. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.Epigenetic inheritance, transgenerational transmission of traits not proximally determined by DNA sequence, has been linked to transmission of chromatin modifications and gene regulation, which are known to be sensitive to environmental factors. Mimulus guttatus increases trichome (plant hair) density in response to simulated herbivore damage. Increased density is expressed in progeny even if progeny do not experience damage. To better understand epigenetic inheritance of trichome production, we tested the hypothesis that candidate gene expression states are inherited in response to parental damage.
Using M. guttatus recombinant inbred lines, offspring of leaf-damaged and control plants were raised without damage. Relative expression of candidate trichome development genes was measured in offspring. Line and parental damage effects on trichome density were measured. Associations between gene expression, trichome density, and response to parental damage were determined.
We identified M. guttatus MYB MIXTA-like 8 as a possible negative regulator of trichome development. We found that parental leaf damage induces down-regulation of MYB MIXTA-like 8 in progeny, which is associated with epigenetically inherited increased trichome density.
Our results link epigenetic transmission of an ecologically important trait with differential gene expression states – providing insight into a mechanism underlying environmentally induced ‘soft inheritance’
Recommended from our members
Recalibration of the delirium prediction model for ICU patients (PRE-DELIRIC): a multinational observational study
Purpose
Recalibration and determining discriminative power, internationally, of the existing delirium prediction model (PRE-DELIRIC) for intensive care patients.
Methods
A prospective multicenter cohort study was performed in eight intensive care units (ICUs) in six countries. The ten predictors (age, APACHE-II, urgent and admission category, infection, coma, sedation, morphine use, urea level, metabolic acidosis) were collected within 24 h after ICU admission. The confusion assessment method for the intensive care unit (CAM-ICU) was used to identify ICU delirium. CAM-ICU screening compliance and inter-rater reliability measurements were used to secure the quality of the data.
Results
A total of 2,852 adult ICU patients were screened of which 1,824 (64 %) were eligible for the study. Main reasons for exclusion were length of stay <1 day (19.1 %) and sustained coma (4.1 %). CAM-ICU compliance was mean (SD) 82 ± 16 % and inter-rater reliability 0.87 ± 0.17. The median delirium incidence was 22.5 % (IQR 12.8–36.6 %). Although the incidence of all ten predictors differed significantly between centers, the area under the receiver operating characteristic (AUROC) curve of the eight participating centers remained good: 0.77 (95 % CI 0.74–0.79). The linear predictor and intercept of the prediction rule were adjusted and resulted in improved re-calibration of the PRE-DELIRIC model.
Conclusions
In this multinational study, we recalibrated the PRE-DELIRIC model. Despite differences in the incidence of predictors between the centers in the different countries, the performance of the PRE-DELIRIC-model remained good. Following validation of the PRE-DELIRIC model, it may facilitate implementation of strategies to prevent delirium and aid improvements in delirium management of ICU patients
A genome-wide screen in human embryonic stem cells reveals novel sites of allele-specific histone modification associated with known disease loci
<p>Abstract</p> <p>Background</p> <p>Chromatin structure at a given site can differ between chromosome copies in a cell, and such imbalances in chromatin structure have been shown to be important in understanding the molecular mechanisms controlling several disease loci. Human genetic variation, DNA methylation, and disease have been intensely studied, uncovering many sites of allele-specific DNA methylation (ASM). However, little is known about the genome-wide occurrence of sites of allele-specific histone modification (ASHM) and their relationship to human disease. The aim of this study was to investigate the extent and characteristics of sites of ASHM in human embryonic stem cells (hESCs).</p> <p>Results</p> <p>Using a statistically rigorous protocol, we investigated the genomic distribution of ASHM in hESCs, and their relationship to sites of allele-specific expression (ASE) and DNA methylation. We found that, although they were rare, sites of ASHM were substantially enriched at loci displaying ASE. Many were also found at known imprinted regions, hence sites of ASHM are likely to be better markers of imprinted regions than sites of ASM. We also found that sites of ASHM and ASE in hESCs colocalize at risk loci for developmental syndromes mediated by deletions, providing insights into the etiology of these disorders.</p> <p>Conclusion</p> <p>These results demonstrate the potential importance of ASHM patterns in the interpretation of disease loci, and the protocol described provides a basis for similar studies of ASHM in other cell types to further our understanding of human disease susceptibility.</p
- …
