326 research outputs found
Understanding local ethnic inequalities in childhood BMI through cross-sectional analysis of routinely collected local data
Background: Local-level analysis of ethnic inequalities in health is lacking, prohibiting a comprehensive understanding of the health needs of local populations and the design of effective health services. Knowledge of ethnic disparities in child weight status is particularly limited by overlooking both the heterogeneity within ethnic groupings; and the complex ecological contexts in which obesity arises. This study aimed to establish whether there was variation in childhood BMI across ethnic groups in Coventry, and the influence of individual, school and neighbourhood contexts, using routinely collected local data. Methods: National Child Measurement Programme data were compiled for the period 2007/8-2014/15 and combined with routinely collected local data reflecting school performance and demographics, and school and neighbourhood physical environments. Multi-level modelling using Monte Carlo Markov Chain methods was used to account for the clustering of children within schools and neighbourhoods. Ethnic group differences in BMI z-score (zBMI) were explored at 4-5 years and 10-11 years for girls and boys alongside individual, school and neighbourhood covariates. Results: At age 4-5 years (n = 28,407), ethnic group differences were similar for boys and girls, with children from South Asian, White other, Chinese and 'any other' ethnic groups having a significantly lower zBMI, and Black African children having a higher zBMI, versus White British (WB) children. Patterns differed considerably at age 10-11 years (n = 25,763) with marked sex differences. Boys from White other, Bangladeshi and Black African groups had a significantly higher zBMI than WB boys. For girls, only children from Black ethnic groups showed a significantly higher zBMI. Area-level deprivation was the only important school or neighbourhood covariate, but its inclusion did not explain ethnic group differences in child zBMI. Conclusion: This analysis contributes to the existing literature by identifying nuanced patterns of ethnic disparities in childhood adiposity in Coventry, supporting the targeting of early obesity prevention for children from Black African groups, as well as girls from Black Caribbean and Black other ethnic backgrounds; and boys from Bangladeshi and White other ethnic backgrounds. It also demonstrates the utility of exploring routinely collected local data sets in building a comprehensive understanding of local population needs.</p
Epidemiology and heritability of Major Depressive Disorder, stratified by age of onset, sex, and illness course in Generation Scotland:Scottish Family Health Study (GS:SFHS)
The heritability of Major Depressive Disorder (MDD) has been estimated at 37% based largely on twin studies that rely on contested assumptions. More recently, the heritability of MDD has been estimated on large populations from registries such as the Swedish, Finnish, and Chinese cohorts. Family-based designs utilise a number of different relationships and provide an alternative means of estimating heritability. Generation Scotland: Scottish Family Health Study (GS:SFHS) is a large (n = 20,198), family-based population study designed to identify the genetic determinants of common diseases, including Major Depressive Disorder. Two thousand seven hundred and six individuals were SCID diagnosed with MDD, 13.5% of the cohort, from which we inferred a population prevalence of 12.2% (95% credible interval: 11.4% to 13.1%). Increased risk of MDD was associated with being female, unemployed due to a disability, current smokers, former drinkers, and living in areas of greater social deprivation. The heritability of MDD in GS:SFHS was between 28% and 44%, estimated from a pedigree model. The genetic correlation of MDD between sexes, age of onset, and illness course were examined and showed strong genetic correlations. The genetic correlation between males and females with MDD was 0.75 (0.43 to 0.99); between earlier (≤ age 40) and later (> age 40) onset was 0.85 (0.66 to 0.98); and between single and recurrent episodic illness course was 0.87 (0.72 to 0.98). We found that the heritability of recurrent MDD illness course was significantly greater than the heritability of single MDD illness course. The study confirms a moderate genetic contribution to depression, with a small contribution of the common family environment (variance proportion = 0.07, CI: 0.01 to 0.15), and supports the relationship of MDD with previously identified risk factors. This study did not find robust support for genetic differences in MDD due to sex, age of onset, or illness course. However, we found an intriguing difference in heritability between recurrent and single MDD illness course. These findings establish GS:SFHS as a valuable cohort for the genetic investigation of MDD
Natural genetic variation in fluctuating asymmetry of wing shape in Drosophila melanogaster
Fluctuating asymmetry (FA), defined as random deviation from perfect symmetry, has been used to assay the inability of individuals to buffer their developmental processes from environmental perturbations (i.e., developmental instability). In this study, we aimed to characterize the natural genetic variation in FA of wing shape in Drosophila melanogaster, collected from across the Japanese archipelago. We quantified wing shapes at whole wing and partial wing component levels and evaluated their mean and FA. We also estimated the heritability of the mean and FA of these traits. We found significant natural genetic variation in all the mean wing traits and in FA of one of the partial wing components. Heritability estimates for mean wing shapes were significant in two and four out of five wing traits in males and females, respectively. On the contrary, heritability estimates for FA were low and not significant. This is a novel study of natural genetic variation in FA of wing shape. Our findings suggest that partial wing components behave as distinct units of selection for FA, and local adaptation of the mechanisms to stabilize developmental processes occur in nature
Ovarian cancer
Ovarian cancer is not a single disease and can be subdivided into at least five different histological subtypes that have different identifiable risk factors, cells of origin, molecular compositions, clinical features and treatments. Ovarian cancer is a global problem, is typically diagnosed at a late stage and has no effective screening strategy. Standard treatments for newly diagnosed cancer consist of cytoreductive surgery and platinum-based chemotherapy. In recurrent cancer, chemotherapy, anti-angiogenic agents and poly(ADP-ribose) polymerase inhibitors are used, and immunological therapies are currently being tested. High-grade serous carcinoma (HGSC) is the most commonly diagnosed form of ovarian cancer and at diagnosis is typically very responsive to platinum-based chemotherapy. However, in addition to the other histologies, HGSCs frequently relapse and become increasingly resistant to chemotherapy. Consequently, understanding the mechanisms underlying platinum resistance and finding ways to overcome them are active areas of study in ovarian cancer. Substantial progress has been made in identifying genes that are associated with a high risk of ovarian cancer (such as BRCA1 and BRCA2), as well as a precursor lesion of HGSC called serous tubal intraepithelial carcinoma, which holds promise for identifying individuals at high risk of developing the disease and for developing prevention strategies
Changes in connective tissue in patients with pelvic organ prolapse-a review of the current literature
Reproductive responses to varying food supply in a population of Darwin's finches: Clutch size, growth rates and hatching synchrony
I show how food shortage affects reproduction in a population of Darwin's Medium Ground Finches, Geospiza fortis . Despite the common occurrence of starvation and absence of nest predation, hatching is typically nighly synchronous and adaptive brood reductionappears to be absent. Variation in both growth rates and clutch size in association with the varying conditions is documented. This variation is interpreted as being a direct response to environmental conditions rather than adaptive phenotypic plasticity. I conclude that selection pressures to raise one or two chicks during times of food shortage, or to delay growth rates, are weak or absent.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47759/1/442_2004_Article_BF00378307.pd
Heterosis as Investigated in Terms of Polyploidy and Genetic Diversity Using Designed Brassica juncea Amphiploid and Its Progenitor Diploid Species
Fixed heterosis resulting from favorable interactions between the genes on their homoeologous genomes in an allopolyploid is considered analogous to classical heterosis accruing from interactions between homologous chromosomes in heterozygous plants of a diploid species. It has been hypothesized that fixed heterosis may be one of the causes of low classical heterosis in allopolyploids. We used Indian mustard (Brassica juncea, 2n = 36; AABB) as a model system to analyze this hypothesis due to ease of its resynthesis from its diploid progenitors, B. rapa (2n = 20; AA) and B. nigra (2n = 16; BB). Both forms of heterosis were investigated in terms of ploidy level, gene action and genetic diversity. To facilitate this, eleven B. juncea genotypes were resynthesized by hybridizing ten near inbred lines of B. rapa and nine of B. nigra. Three half diallel combinations involving resynthesized B. juncea (11×11) and the corresponding progenitor genotypes of B. rapa (10×10) and B. nigra (9×9) were evaluated. Genetic diversity was estimated based on DNA polymorphism generated by SSR primers. Heterosis and genetic diversity in parental diploid species appeared not to predict heterosis and genetic diversity at alloploid level. There was also no association between combining ability, genetic diversity and heterosis across ploidy. Though a large proportion (0.47) of combinations showed positive values, the average fixed heterosis was low for seed yield but high for biomass yield. The genetic diversity was a significant contributor to fixed heterosis for biomass yield, due possibly to adaptive advantage it may confer on de novo alloploids during evolution. Good general/specific combiners at diploid level did not necessarily produce good general/specific combiners at amphiploid level. It was also concluded that polyploidy impacts classical heterosis indirectly due to the negative association between fixed heterosis and classical heterosis
Susceptibility of Anopheles stephensi to Plasmodium gallinaceum: A Trait of the Mosquito, the Parasite, and the Environment
Vector susceptibility to Plasmodium infection is treated primarily as a vector trait, although it is a composite trait expressing the joint occurrence of the parasite and the vector with genetic contributions of both. A comprehensive approach to assess the specific contribution of genetic and environmental variation on "vector susceptibility" is lacking. Here we developed and implemented a simple scheme to assess the specific contributions of the vector, the parasite, and the environment to "vector susceptibility." To the best of our knowledge this is the first study that employs such an approach.We conducted selection experiments on the vector (while holding the parasite "constant") and on the parasite (while holding the vector "constant") to estimate the genetic contributions of the mosquito and the parasite to the susceptibility of Anopheles stephensi to Plasmodium gallinaceum. We separately estimated the realized heritability of (i) susceptibility to parasite infection by the mosquito vector and (ii) parasite compatibility (transmissibility) with the vector while controlling the other. The heritabilities of vector and the parasite were higher for the prevalence, i.e., fraction of infected mosquitoes, than the corresponding heritabilities of parasite load, i.e., the number of oocysts per mosquito.The vector's genetics (heritability) comprised 67% of "vector susceptibility" measured by the prevalence of mosquitoes infected with P. gallinaceum oocysts, whereas the specific contribution of parasite genetics (heritability) to this trait was only 5%. Our parasite source might possess minimal genetic diversity, which could explain its low heritability (and the high value of the vector). Notably, the environment contributed 28%. These estimates are relevant only to the particular system under study, but this experimental design could be useful for other parasite-host systems. The prospects and limitations of the genetic manipulation of vector populations to render the vector resistant to the parasite are better considered on the basis of this framework
Impact of Darker, Intermediate and Lighter Phenotypes of Body Melanization on Desiccation Resistance in Drosophila melanogaster
A possible link between melanization and desiccation resistance can be inferred if within population differences in melanization find significant correlations with desiccation resistance and its mechanistic basis i.e. rate of water loss/hr. Accordingly, darker, intermediate and lighter phenotypes of body melanization were analyzed in wild and laboratory reared Drosophila melanogaster L. (Diptera: Clyclorrapha) populations from highland and lowland sites located in close proximity at five different latitudinal locations (11.15 °N to 31.06°N) within the Indian subcontinent. In large population samples, occurrence of significant within population variability made it possible to assort non-overlapping phenotypes of body coloration (i.e. lighter (< 25%), intermediate (30 to 40%) and darker (> 45%)) for all the populations which were further investigated for desiccation resistance and rate of water loss/hr. Significantly, higher desiccation resistance but much reduced rate of water loss/hr were observed in darker and intermediate phenotypes in all the populations. By contrast, lighter phenotypes exhibited lower desiccation tolerance but higher rate of water loss/hr. A regression analysis between traits provided similar slope values for wild and laboratory populations. For all three physiological traits, predicted trait values from multiple regression analysis as a simultaneous function of annual average temperature and relative humidity, matched the observed values. We infer that parallel changes in melanization and desiccation resistance may result from decreasing annual average temperature and relative humidity along increasing latitude as well as altitude on the Indian subcontinent
- …
