42 research outputs found

    TRAIP promotes DNA damage response during genome replication and is mutated in primordial dwarfism.

    Get PDF
    DNA lesions encountered by replicative polymerases threaten genome stability and cell cycle progression. Here we report the identification of mutations in TRAIP, encoding an E3 RING ubiquitin ligase, in patients with microcephalic primordial dwarfism. We establish that TRAIP relocalizes to sites of DNA damage, where it is required for optimal phosphorylation of H2AX and RPA2 during S-phase in response to ultraviolet (UV) irradiation, as well as fork progression through UV-induced DNA lesions. TRAIP is necessary for efficient cell cycle progression and mutations in TRAIP therefore limit cellular proliferation, providing a potential mechanism for microcephaly and dwarfism phenotypes. Human genetics thus identifies TRAIP as a component of the DNA damage response to replication-blocking DNA lesions.This work was supported by funding from the Medical Research Council and the European Research Council (ERC, 281847) (A.P.J.), the Lister Institute for Preventative Medicine (A.P.J. and G.S.S.), Medical Research Scotland (L.S.B.), German Federal Ministry of Education and Research (BMBF, 01GM1404) and E-RARE network EuroMicro (B.W), Wellcome Trust (M. Hurles), CMMC (P.N.), Cancer Research UK (C17183/A13030) (G.S.S. and M.R.H), Swiss National Science Foundation (P2ZHP3_158709) (O.M.), AIRC (12710) and ERC/EU FP7 (CIG_303806) (S.S.), Cancer Research UK (C6/A11224) and ERC/EU FP7 (HEALTH-F2- 2010-259893) (A.N.B. and S.P.J.).This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/ng.345

    The osteology of ‘Periptychus carinidens’: a robust, ungulate-like placental mammal (Mammalia: Periptychidae) from the Paleocene of North America

    Get PDF
    Periptychus is the archetypal genus of Periptychidae, a clade of prolific Paleocene 'condylarth' mammals from North America that were among the first placental mammals to radiate after the end-Cretaceous extinction, remarkable for their distinctive dental anatomy. A comprehensive understanding of the anatomy of Periptychus has been hindered by a lack of cranial and postcranial material and only cursory description of existing material. We comprehensively describe the cranial, dental and postcranial anatomy of Periptychus carinidens based on new fossil material from the early Paleocene (Torrejonian) of New Mexico, USA. The cranial anatomy of Periptychus is broadly concurrent with the inferred plesiomorphic eutherian condition, albeit more robust in overall construction. The rostrum is moderately elongate with no constriction, the facial region is broad, and the braincase is small with a well-exposed mastoid on the posterolateral corner and tall sagittal and nuchal crests. The dentition of Periptychus is characterized by strongly crenulated enamel, enlarged upper and lower premolars with a tall centralised paracone/protoconid. The postcranial skeleton of Periptychus is that of a robust, medium-sized (~20 Kg) stout-limbed animal that was incipiently mediportal and adopted a plantigrade stance. The structure of the fore- and hindlimb of Periptychus corresponds to that of a typically terrestrial mammal, while morphological features of the forelimb such as the low tubercles of the humerus, long and prominent deltopectoral crest, pronounced medial epicondyle, and hemispherical capitulum indicate some scansorial and/or fossorial ability. Most striking is the strongly dorsoplantarly compressed astragalus of Periptychus, which in combination with the distal crus and calcaneal morphology indicates a moderately mobile cruropedal joint. The anatomy of Periptychus is unique and lacks any extant analogue; it combines a basic early placental body plan with numerous unique specializations in its dental, cranial and postcranial anatomy that exemplify the ability of mammals to adapt and evolve following catastrophic environmental upheaval

    Diarrhea Post-HSCT

    No full text

    Effect of relative humidity on transfer of aerosol deposited artificial and human saliva from surfaces to artificial finger-pads

    Get PDF
    Surface to hand transfer of viruses represents a potential mechanism for human exposure. An experimental process for evaluating the touch transfer of aerosol-deposited material is described based on controlling surface, tribological, and soft matter components of the transfer process. A range of high-touch surfaces were evaluated. Under standardized touch parameters (15 N, 1 s), relative humidity (RH) of the atmosphere around the contact transfer event significantly influenced transfer of material to the finger-pad. At RH < 40%, transfer from all surfaces was <10%. Transfer efficiency increased markedly as RH increased, reaching a maximum of approximately 50%. The quantity of material transferred at specific RHs above 40% was also dependent on roughness of the surface material and the properties of the aerosol-deposited material. Smooth surfaces, such as melamine and stainless steel, generated higher transfer efficiencies compared to those with textured roughness, such as ABS pinseal and KYDEX® plastics. Pooled human saliva was transferred at a lower rate compared to artificial saliva, indicating the role of rheological properties. The artificial saliva data were modeled by non-linear regression and the impact of environmental humidity and temperature were evaluated within a Quantitative Microbial Risk Assessment model using SARS-CoV-2 as an example. This illustrated that the trade-off between transfer efficiency and virus survival may lead to the highest risks of fomite transmissions in indoor environments with higher humidity

    Variation in intraocular pressure following application of tropicamide in three different dog breeds

    No full text
    OBJECTIVE: To record intraocular pressure (IOP) of three different dog breeds following administration of one drop of 1% tropicamide. ANIMALS: Three dog breeds -- Golden Retrievers (n = 20), Siberian Huskies (n = 20) and English Cocker Spaniels (n = 36) -- were studied. PROCEDURE: IOPs were measured using a Tonopen following corneal anesthesia with a single drop of 0.5% proxymetacaine. A drop of 0.5% tropicamide was then administered bilaterally and a second IOP measurement was taken 30 min later (postdilation). The difference between the two measurements was considered as the effect of mydriasis on IOP. RESULTS: Dogs had an average IOP of 14.9 +/- 3.2 mmHg, with 95% confidence limits ranging from 8 to 22 mmHg. There were significant differences between breeds (P < 0.006) with Siberian Huskies having higher IOPs (17.2 +/- 3.7 mmHg) than the other breeds (Spaniels: 14.2 +/- 2.8 mmHg, P < 0.01; Retrievers: 14 +/- 1.9 mmHg, P < 0.001). The majority (60%) of dogs displayed 5 mmHg or less in IOP change postmydriasis. Siberian Huskies showed the highest IOP levels, and also had the greatest variability with dilation. CONCLUSIONS AND CLINICAL RELEVANCE: Interbreed variability in effect of tropicamide of canine IOP is evident

    Novel antitrypanosomal agents

    No full text
    Trypanosomes are the causative agents of Chagas' disease in Central and South America and sleeping sickness in sub-Saharan Africa. The current chemotherapy of the human trypanosomiases relies on only six drugs, five of which were developed > 30 years ago. In addition, these drugs display undesirable toxic side effects and the emergence of drug-resistant trypanosomes has been reported. Therefore, the development of new drugs in the treatment of Chagas' disease and sleeping sickness is urgently required. This article summarises the recent progress in identifying novel lead compounds for antitrypanosomal chemotherapy. Particular emphasis is placed on those agents showing promising, selective antitrypanosomal activity
    corecore