2,820 research outputs found
A 3-Subset Meet-in-the-Middle Attack: Cryptanalysis of the Lightweight Block Cipher KTANTAN
status: publishe
Privately Connecting Mobility to Infectious Diseases via Applied Cryptography
Human mobility is undisputedly one of the critical factors in infectious
disease dynamics. Until a few years ago, researchers had to rely on static data
to model human mobility, which was then combined with a transmission model of a
particular disease resulting in an epidemiological model. Recent works have
consistently been showing that substituting the static mobility data with
mobile phone data leads to significantly more accurate models. While prior
studies have exclusively relied on a mobile network operator's subscribers'
aggregated data, it may be preferable to contemplate aggregated mobility data
of infected individuals only. Clearly, naively linking mobile phone data with
infected individuals would massively intrude privacy. This research aims to
develop a solution that reports the aggregated mobile phone location data of
infected individuals while still maintaining compliance with privacy
expectations. To achieve privacy, we use homomorphic encryption, zero-knowledge
proof techniques, and differential privacy. Our protocol's open-source
implementation can process eight million subscribers in one and a half hours.
Additionally, we provide a legal analysis of our solution with regards to the
EU General Data Protection Regulation.Comment: Added differentlial privacy experiments and new benchmark
The polymorphisms of the MMP-1 and the MMP-3 genes and the risk of pelvic organ prolapse
INTRODUCTION AND HYPOTHESIS: To investigate the associations between single nucleotide polymorphism (SNP) type 1G/2G at position −1607/−1608 of the matrix metalloproteinase (MMP)-1 gene and SNP type 5A/6A at position −1612/-1617 of the MMP-3 gene and the development of pelvic organ prolapse (POP) in women. METHODS: 133 patients with symptomatic POP were included in the study group. The control group consisted of 132 women with a normal pelvic floor. 1G/2G MMP-1 and 5A/6A MMP-3 SNPs were determined by polymerase chain reaction (PCR) and restriction fragments length polymorphism analysis. RESULTS: When estimated individually none of the investigated SNPs were associated with POP. The combined MMP-1/MMP-3 SNP analysis showed that the following polymorphic pairs were overrepresented in women with POP: 1G/2G −5A/6A, 2G/2G −5A/6A, 2G/2G −5A/5A, 1G/1G −6A/6A, p = 0.005. CONCLUSIONS: The combined effect of −1607/−1608 MMP-1 and −1612/−1617 MMP-3 SNPs may contribute to the development of POP in some women
MiMC:Efficient Encryption and Cryptographic Hashing with Minimal Multiplicative Complexity
We explore cryptographic primitives with low multiplicative complexity. This is motivated by recent progress in practical applications of secure multi-party computation (MPC), fully homomorphic encryption (FHE), and zero-knowledge proofs (ZK) where primitives from symmetric cryptography are needed and where linear computations are, compared to non-linear operations, essentially ``free\u27\u27. Starting with the cipher design strategy ``LowMC\u27\u27 from Eurocrypt 2015, a number of bit-oriented proposals have been put forward, focusing on applications where the multiplicative depth of the circuit describing the cipher is the most important optimization goal.
Surprisingly, albeit many MPC/FHE/ZK-protocols natively support operations in \GF{p} for large , very few primitives, even considering all of symmetric cryptography, natively work in such fields. To that end, our proposal for both block ciphers and cryptographic hash functions is to reconsider and simplify the round function of the Knudsen-Nyberg cipher from 1995. The mapping is used as the main component there and is also the main component of our family of proposals called ``MiMC\u27\u27. We study various attack vectors for this construction and give a new attack vector that outperforms others in relevant settings.
Due to its very low number of multiplications, the design lends itself
well to a large class of new applications, especially when the depth does not matter but the total number of multiplications in the circuit
dominates all aspects of the implementation. With a number of rounds which we deem secure based on our security analysis, we report on significant performance improvements in a representative use-case involving SNARKs
Dealloying of Platinum-Aluminum Thin Films Part I. Dynamics of Pattern Formation
Applying focused ion beam (FIB) nanotomography and Rutherford backscattering
spectroscopy (RBS) to dealloyed platinum-aluminum thin films an in-depth
analysis of the dominating physical mechanisms of porosity formation during the
dealloying process is performed. The dynamical porosity formation due to the
dissolution of the less noble aluminum in the alloy is treated as result of a
reaction-diffusion system. The RBS analysis yields that the porosity formation
is mainly caused by a linearly propagating diffusion front, i.e. the
liquid/solid interface, with a uniform speed of 42(3) nm/s when using a 4M
aqueous NaOH solution at room temperature. The experimentally observed front
evolution is captured by the normal diffusive
Fisher-Kolmogorov-Petrovskii-Piskounov (FKPP) equation and can be interpreted
as a branching random walk phenomenon. The etching front produces a gradual
porosity with an enhanced porosity in the surface-near regions of the thin film
due to prolonged exposure of the alloy to the alkaline solution.Comment: 4 pages, 5 figure
The Effect of Data Structure and Model Choices on MFA Results: A Comparison of Phosphorus Balances for Denmark and Austria
- …
