353 research outputs found
An Investigation Into the Effects of Various Transport Policies on the Levels of Motorised Traffic in Great Britain in 2006
This Working Paper presents the results of tests of various transport policies which could potentially have a major impact on private car travel and hence gain environmental benefits at a national level. The forecasting methodology was to take OPCS population forecasts for year 2006 in 28 age/sex/area type categories, predict the car available percentage of person in each category in 2006, and then predict trip mileage growth (by three mode types for the 28 categories each subdivided into car available and car non-availahle. For the latter two predications, NTS data for 1985/6 and 1991/3 were compared and projected forward with various adjustments. The effect of individual transport policies on trip rates for individual cells was determined from results derived from other studies, coupled with a consideration of economic theory. Of the tests considered, only the tripling of fuel prices for private mode transport was ahle to hold private mode mileage in 2006 at ahout its 1992 level
Post-harvest handling practices and associated food losses and limitations in the sweetpotato value chain of southern Ethiopia
Household food insecurity is a chronic problem in Ethiopia; the situation is being exacerbated by high population growth rates and recurring droughts in the country. The interest to address post-harvest value chain (VC) constraints leading to food losses has increased significantly to provide adequate nutrition to the growing population. In this study, mapping of sweetpotato VC not only quantifies the degree of losses but establish links between distinct VC constraints and respective food losses and limitations. Harvest and handling at farm level and shelf life issues at distribution were identified as vulnerable hot-spots of the sweetpotato food losses. Apart from physical and biological factors, demand and supply mismatch during the main harvest season at the wet markets leads to food (up to 25%) and economic losses (33–75%) followed by deficiencies in the lean season. A multi-stakeholder cooperation is required to mitigate food losses, which can have a high impact on the nutritional and financial status of the producers, market operators, and the consumers
Characterisation of demoulding parameters in micro-injection moulding
YesCondition monitoring of micro injection moulding is an effective way of understanding the processing effects of variable parameter settings. This paper reports an experimental study that investigates the characteristics of the demoulding behaviour in micro injection moulding (A mu-IM) with a focus on the process factors that affect parts' quality. Using a Cyclic Olefin Copolyme (COC) microfluidics demonstrator, the demoulding performance was studied as a function of four process parameters (melt temperature, mould temperature, holding pressure and injection speed), employing the design of experiment approach. The results provide empirical evidences on the effect that processing parameters have on demoulding conditions in A mu-IM, and identifies combinations of parameters that can be used to achieve the optimal processing conditions in regards to demoulding behaviour of micro parts. It was concluded that there was a direct correlation between the applied pressure during part filling, holding phases and the demoulding characteristic factors of the A mu-IM cycle such as ejection force, integral and time
Investigation of the Integrity of aC:H Coatings on Stainless Steel Micro-Moulds during Thermal Cycling
Micro-injection moulding (µIM) is a key technology for scaling down larger geometry components and can include functional features at the micrometre scale and as far as the sub-micrometre length scale. Thermal cycling of amorphous hydrogenated carbon (aC:H) coated Stainless Steel (SS) has been investigated to simulate long-term micro-injection moulding (µIM) wearing and damage. Micro indentations and cracks were made into the mould and predictions of the crack behaviour were made using thermal expansion models. Validation of the results was performed with multiple heating and cooling cycles along with hardness measurements of the damage to the coating. The undamaged surfaces showed no major deformation but the cracks were shown to propagate and change in behaviour. The first two heat cycles of the testing had the most significant effect on the substrate with varying thermal expansions of materials being the main cause. The aC:H is shown to have excellent properties for mould tool applications but delamination could occur in areas susceptible to damaged and periodic surface inspection will be required preserve tool life
Mineralogy and Malignant Mesothelioma: The South African Experience
South Africa is a uniquely mineral rich country. Of the six types of asbestiform minerals found in the country, three, namely crocidolite, amosite and chrysotile were mined and milled on a large commercial scale. Asbestos was used locally in South Africa, but the majority of its production was exported worldwide. In the 1970s, South Africa was the world’s third largest producer of asbestos, behind Canada and the USSR. About 97% of the world’s production of crocidolite and virtually all of the amosite came from South Africa. The output from the South African asbestos mining industry peaked at 380,000 tonnes in 1977 and declined thereafter as export markets declined due to restrictive legislation in countries that imported asbestos (Virta, 2006; Kielkowski et al., 2011). Legislation in South Africa banning the use of all types of asbestos came into effect in 2008, well after the last asbestos mine ceased production in 2001 and closed in 2002. Although South Africa benefitted financially from the exploitation of its asbestos mineral reserves, the revenue from asbestos never accounted for more than 3% of the value of its total minerals output (McCulloch, 2003). There is however a high price to pay in terms of a legacy of disease and environmental contamination through mining activities and the transport of asbestos and asbestos containing products
Magnetic Reconnection in Extreme Astrophysical Environments
Magnetic reconnection is a basic plasma process of dramatic rearrangement of
magnetic topology, often leading to a violent release of magnetic energy. It is
important in magnetic fusion and in space and solar physics --- areas that have
so far provided the context for most of reconnection research. Importantly,
these environments consist just of electrons and ions and the dissipated energy
always stays with the plasma. In contrast, in this paper I introduce a new
direction of research, motivated by several important problems in high-energy
astrophysics --- reconnection in high energy density (HED) radiative plasmas,
where radiation pressure and radiative cooling become dominant factors in the
pressure and energy balance. I identify the key processes distinguishing HED
reconnection: special-relativistic effects; radiative effects (radiative
cooling, radiation pressure, and Compton resistivity); and, at the most extreme
end, QED effects, including pair creation. I then discuss the main
astrophysical applications --- situations with magnetar-strength fields
(exceeding the quantum critical field of about 4 x 10^13 G): giant SGR flares
and magnetically-powered central engines and jets of GRBs. Here, magnetic
energy density is so high that its dissipation heats the plasma to MeV
temperatures. Electron-positron pairs are then copiously produced, making the
reconnection layer highly collisional and dressing it in a thick pair coat that
traps radiation. The pressure is dominated by radiation and pairs. Yet,
radiation diffusion across the layer may be faster than the global Alfv\'en
transit time; then, radiative cooling governs the thermodynamics and
reconnection becomes a radiative transfer problem, greatly affected by the
ultra-strong magnetic field. This overall picture is very different from our
traditional picture of reconnection and thus represents a new frontier in
reconnection research.Comment: Accepted to Space Science Reviews (special issue on magnetic
reconnection). Article is based on an invited review talk at the
Yosemite-2010 Workshop on Magnetic Reconnection (Yosemite NP, CA, USA;
February 8-12, 2010). 30 pages, no figure
Magnetoluminescence
Pulsar Wind Nebulae, Blazars, Gamma Ray Bursts and Magnetars all contain
regions where the electromagnetic energy density greatly exceeds the plasma
energy density. These sources exhibit dramatic flaring activity where the
electromagnetic energy distributed over large volumes, appears to be converted
efficiently into high energy particles and gamma-rays. We call this general
process magnetoluminescence. Global requirements on the underlying, extreme
particle acceleration processes are described and the likely importance of
relativistic beaming in enhancing the observed radiation from a flare is
emphasized. Recent research on fluid descriptions of unstable electromagnetic
configurations are summarized and progress on the associated kinetic
simulations that are needed to account for the acceleration and radiation is
discussed. Future observational, simulation and experimental opportunities are
briefly summarized.Comment: To appear in "Jets and Winds in Pulsar Wind Nebulae, Gamma-ray Bursts
and Blazars: Physics of Extreme Energy Release" of the Space Science Reviews
serie
The Fueling and Evolution of AGN: Internal and External Triggers
In this chapter, I review the fueling and evolution of active galactic nuclei
(AGN) under the influence of internal and external triggers, namely intrinsic
properties of host galaxies (morphological or Hubble type, color, presence of
bars and other non-axisymmetric features, etc) and external factors such as
environment and interactions. The most daunting challenge in fueling AGN is
arguably the angular momentum problem as even matter located at a radius of a
few hundred pc must lose more than 99.99 % of its specific angular momentum
before it is fit for consumption by a BH. I review mass accretion rates,
angular momentum requirements, the effectiveness of different fueling
mechanisms, and the growth and mass density of black BHs at different epochs. I
discuss connections between the nuclear and larger-scale properties of AGN,
both locally and at intermediate redshifts, outlining some recent results from
the GEMS and GOODS HST surveys.Comment: Invited Review Chapter to appear in LNP Volume on "AGN Physics on All
Scales", Chapter 6, in press. 40 pages, 12 figures. Typo in Eq 5 correcte
Nitrous oxide emissions from European agriculture - An analysis of variability and drivers of emissions from field experiments
Nitrous oxide emissions from a network of agricultural experiments in Europe were used to explore the relative importance of site and management controls of emissions. At each site, a selection of management interventions were compared within replicated experimental designs in plot-based experiments. Arable experiments were conducted at Beano in Italy, El Encin in Spain, Foulum in Denmark, Logården in Sweden, Maulde in Belgium, Paulinenaue in Germany, and Tulloch in the UK. Grassland experiments were conducted at Crichton, Nafferton and Peaknaze in the UK, Gödöllö in Hungary, Rzecin in Poland, Zarnekow in Germany and Theix in France. Nitrous oxide emissions were measured at each site over a period of at least two years using static chambers. Emissions varied widely between sites and as a result of manipulation treatments. Average site emissions (throughout the study period) varied between 0.04 and 21.21 kg N<sub>2</sub>O-N ha<sup>−1</sup> yr<sup>−1</sup>, with the largest fluxes and variability associated with the grassland sites. Total nitrogen addition was found to be the single most important determinant of emissions, accounting for 15% of the variance (using linear regression) in the data from the arable sites (<i>p</i> < 0.0001), and 77% in the grassland sites. The annual emissions from arable sites were significantly greater than those that would be predicted by IPCC default emission factors. Variability of N<sub>2</sub>O emissions within sites that occurred as a result of manipulation treatments was greater than that resulting from site-to-site and year-to-year variation, highlighting the importance of management interventions in contributing to greenhouse gas mitigation
International equatorial electrojet year : the African sector
International audienceThis paper presents the IEEY project in the African sector. The amount of our interpreted data is presently too short to allow proper scientific conclusions. Nevertheless, fist typical results illustrate our network possibilities. Some preliminary observations are briefly pre- , sented for their interest towards immediate research goals
- …
