585 research outputs found
Selective Control of the Symmetric Dicke Subspace in Trapped Ions
We propose a method of manipulating selectively the symmetric Dicke subspace
in the internal degrees of freedom of N trapped ions. We show that the direct
access to ionic-motional subspaces, based on a suitable tuning of
motion-dependent AC Stark shifts, induces a two-level dynamics involving
previously selected ionic Dicke states. In this manner, it is possible to
produce, sequentially and unitarily, ionic Dicke states with increasing
excitation number. Moreover, we propose a probabilistic technique to produce
directly any ionic Dicke state assuming suitable initial conditions.Comment: 5 pages and 1 figure. New version with minor changes and added
references. Accepted in Physical Review
Enhanced Quantum Synchronization via Quantum Machine Learning
We study the quantum synchronization between a pair of two-level systems
inside two coupled cavities. By using a digital-analog decomposition of the
master equation that rules the system dynamics, we show that this approach
leads to quantum synchronization between both two-level systems. Moreover, we
can identify in this digital-analog block decomposition the fundamental
elements of a quantum machine learning protocol, in which the agent and the
environment (learning units) interact through a mediating system, namely, the
register. If we can additionally equip this algorithm with a classical feedback
mechanism, which consists of projective measurements in the register,
reinitialization of the register state and local conditional operations on the
agent and environment subspace, a powerful and flexible quantum machine
learning protocol emerges. Indeed, numerical simulations show that this
protocol enhances the synchronization process, even when every subsystem
experience different loss/decoherence mechanisms, and give us the flexibility
to choose the synchronization state. Finally, we propose an implementation
based on current technologies in superconducting circuits
Effective Quantum Dynamics of Interacting Systems with Inhomogeneous Coupling
We study the quantum dynamics of a single mode/particle interacting
inhomogeneously with a large number of particles and introduce an effective
approach to find the accessible Hilbert space where the dynamics takes place.
Two relevant examples are given: the inhomogeneous Tavis-Cummings model (e.g.,
N atomic qubits coupled to a single cavity mode, or to a motional mode in
trapped ions) and the inhomogeneous coupling of an electron spin to N nuclear
spins in a quantum dot.Comment: 9 pages and 10 figures, new version, accepted in Physical Review
Entanglement of formation for a class of -dimensional systems
Currently the entanglement of formation can be calculated analytically for
mixed states in a -dimensional Hilbert space. For states in higher
dimensional Hilbert space a closed formula for quantifying entanglement does
not exist. In this regard only entanglement bounds has been found for
estimating it. In this work, we find an analytical expression for evaluating
the entanglement of formation for bipartite ()-dimensional mixed
states.Comment: 5 pages, 4 figures. Submitted for publicatio
Field squeeze operators in optical cavities with atomic ensembles
We propose a method of generating unitarily single and two-mode field
squeezing in an optical cavity with an atomic cloud. Through a suitable laser
system, we are able to engineer a squeeze field operator decoupled from the
atomic degrees of freedom, yielding a large squeeze parameter that is scaled up
by the number of atoms, and realizing degenerate and non-degenerate parametric
amplification. By means of the input-output theory we show that ideal squeezed
states and perfect squeezing could be approached at the output. The scheme is
robust to decoherence processes.Comment: Four pages and one figure. Accepted in Physical Review Letter
- …
