1,227 research outputs found
Open radial artery harvesting better preserves endothelial function compared to the endoscopic approach
OBJECTIVES: Both the open and endovascular techniques are commonly used for harvesting the radial artery (ORAH and ERAH, respectively), and yet, very little is known about the effects of these 2 techniques on endothelial integrity and function of the radial artery (RA). The aim of this study was to assess the endothelial integrity and function of RA harvested using the 2 approaches. METHODS: Two independent surgical teams working in the same institution routinely use the RA for coronary artery bypass grafting exclusively employing either ORAH or ERAH. Thirty-nine consecutive patients were enrolled in this comparative study. Endothelial function after ORAH or ERAH was assessed by using the wire myograph system. The integrity of the RA endothelium was evaluated by immunohistochemical staining for erythroblast transformation specific-related gene. RESULTS: The vasodilation in response to acetylcholine was significantly higher in RA harvested with ORAH (P ≤ 0.001 versus ERAH). Endothelial integrity was not different between the 2 groups. CONCLUSIONS: ORAH is associated with a significantly higher endothelium-dependent vasodilation. Further investigation on the potential implications of these findings in terms of graft spasm and patency as well as clinical outcomes are needed
Stability of core/shell quantum dots-role of pH and small organic ligands
The improvement of knowledge about the toxicity and even processability, and stability of quantum dots (QD) requires the understanding of the relationship between
the QD binding head group, surface structure, and interligand interaction. The scanned stripping chronopotentiometry
and absence of gradients and Nernstian equilibrium stripping techniques were used to determine the concentration of Cd dissolved from a polyacrylate-stabilized CdTe/CdS QD. The effects of various concentrations of small organic ligands such as citric acid, glycine, and histidine
and the roles of pH (4.5–8.5) and exposure time (0–48 h) were evaluated. The highest QD dissolution was obtained at the more acidic pH in absence of the ligands (52 %) a result
of the CdS shell solubility. At pH 8.5 the largest PAA ability to complex the dissolved Cd leads to a further QD solubility until the equilibrium is reached (24 % of dissolved Cd vs.4 % at pH 6.0). The citric acid presence resulted in greater QD dissolution, whereas glycine, an amino acid, acts against QD dissolution. Surprisingly, the presence of histidine, an amino acid with an imidazole functional group, leads to the formation of much strong Cd complexes over time, which may be non-labile, inducing variations in the local environment
of the QD surface
Study of decays to the final state and evidence for the decay
A study of decays is performed for the first time
using data corresponding to an integrated luminosity of 3.0
collected by the LHCb experiment in collisions at centre-of-mass energies
of and TeV. Evidence for the decay
is reported with a significance of 4.0 standard deviations, resulting in the
measurement of
to
be .
Here denotes a branching fraction while and
are the production cross-sections for and mesons.
An indication of weak annihilation is found for the region
, with a significance of
2.4 standard deviations.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-022.html,
link to supplemental material inserted in the reference
Roles of genetic polymorphisms in the folate pathway in childhood acute lymphoblastic leukemia evaluated by bayesian relevance and effect size analysis.
In this study we investigated whether polymorphisms in the folate pathway influenced the risk of childhood acute lymphoblastic leukemia (ALL) or the survival rate of the patients. For this we selected and genotyped 67 SNPs in 15 genes in the folate pathway in 543 children with ALL and 529 controls. The results were evaluated by gender adjusted logistic regression and by the Bayesian network based Bayesian multilevel analysis of relevance (BN-BMLA) methods. Bayesian structure based odds ratios for the relevant variables and interactions were also calculated. Altogether 9 SNPs in 8 genes were associated with altered susceptibility to ALL. After correction for multiple testing, two associations remained significant. The genotype distribution of the MTHFD1 rs1076991 differed significantly between the ALL and control population. Analyzing the subtypes of the disease the GG genotype increased only the risk of B-cell ALL (p = 3.52x10(-4); OR = 2.00). The GG genotype of the rs3776455 SNP in the MTRR gene was associated with a significantly reduced risk to ALL (p = 1.21x10(-3); OR = 0.55), which resulted mainly from the reduced risk to B-cell and hyperdiploid-ALL. The TC genotype of the rs9909104 SNP in the SHMT1 gene was associated with a lower survival rate comparing it to the TT genotype (80.2% vs. 88.8%; p = 0.01). The BN-BMLA confirmed the main findings of the frequentist-based analysis and showed structural interactional maps and the probabilities of the different structural association types of the relevant SNPs especially in the hyperdiploid-ALL, involving additional SNPs in genes like TYMS, DHFR and GGH. We also investigated the statistical interactions and redundancies using structural model properties. These results gave further evidence that polymorphisms in the folate pathway could influence the ALL risk and the effectiveness of the therapy. It was also shown that in gene association studies the BN-BMLA could be a useful supplementary to the traditional frequentist-based statistical method
Heteroreceptor complexes formed by dopamine D1, histamine H3 and N-methyl-D-aspartate glutamate receptors as targets to prevent neuronal death in Alzheimer's disease
Alzheimer’s disease (AD) is a neurodegenerative disorder causing progressive memory loss and cognitive dysfunction. Anti-AD strategies targeting cell receptors consider them as isolated units. However, many cell surface receptors cooperate and physically contact each other forming complexes having different biochemical properties than individual receptors. We here report the discovery of dopamine D , histamine H , and N-methylD-aspartate (NMDA) glutamate receptor heteromers in heterologous systems and in rodent brain cortex. Heteromers were detected by coimmunoprecipitation and in situ proximity ligation assays (PLA) in the rat cortex where H receptor agonists, via negative cross-talk, and H receptor antagonists, via cross-antagonism, decreased D receptor agonist signaling determined by ERK1/2 or Akt phosphorylation and counteracted D receptormediated excitotoxic cell death. Both D and H receptor antagonists also counteracted NMDA toxicity suggesting a complex interaction between NMDA receptors and D -H receptor heteromer function. Likely due to heteromerization, H receptors act as allosteric regulator for D and NMDA receptors. By bioluminescence resonance energy transfer (BRET), we demonstrated that D or H receptors form heteromers with NR1A/NR2B NMDA receptor subunits. D -H -NMDA receptor complexes were confirmed by BRET combined with fluorescence complementation. The endogenous expression of complexes in mouse cortex was determined by PLA and similar expression was observed in wild-type and APP/PS1 mice. Consistent with allosteric receptor-receptor interactions within the complex, H receptor antagonists reduced NMDA or D receptor-mediated excitotoxic cell death in cortical organotypic cultures. Moreover, H receptor antagonists reverted the toxicity induced by ß -amyloid peptide. Thus, histamine H receptors in D -H -NMDA heteroreceptor complexes arise as promising targets to prevent neurodegeneration
The deuteron: structure and form factors
A brief review of the history of the discovery of the deuteron in provided.
The current status of both experiment and theory for the elastic electron
scattering is then presented.Comment: 80 pages, 33 figures, submited to Advances in Nuclear Physic
Distribution of Corbicula fluminea (Müller, 1774) in the invaded range: a geographic approach with notes on species traits variability
Corbicula fluminea is considered one of the
most important non-native invasive species (NIS) in
aquatic systems mainly due to its widespread distribution
and ecological and economic impacts. This species
is known to negatively affect native bivalves, also with
severe effects on biodiversity and ecosystem functioning.
Throughout an exhaustive bibliographic survey and
with the aid of Geographic Information Systems tools,
this study tracks the species dispersion from its native
range, including the description of important physical
and environmental barriers. Additional analyses were
conducted to examine possible influences of latitudinal/
temperature gradients on important traits (e.g. life span,
maximum and mean body length, growth at the end of
first year). Altitude and winter minimum temperature
appear to be delaying the invasion worldwide, but it
seems inevitable that the species will spread across the
globe. Latitude and summer temperature show a
relationship with growth and life span. Overall, the
information gathered in this review may be relevant to
forecast future distribution patterns of this NIS, and to
anticipate the possible implementation of effective
management measures. Moreover, it may constitute a
valuabletool inthe prediction of population responses to
an increasingly changing environment.This research was supported by FCT
(Portuguese Foundation for Science and Technology), through
a PhD grant attributed to D. Crespo (SFRH/BD/80252/2011), a
post-doc grant attributed to S. Leston (SFRH/BPD/91828/2012)
and M Dolbeth (SFRH/BPD/41117/2007) and BIOCHANGED
project (PTDC/MAR/111901/2009), subsidized by the
European Social Fund and MCTES (Ministério da Ciência,
Tecnologia e Ensino Superior) National Funds, through the
POPH (Human Potential Operational Programme), QREN
(National Strategic Reference Framework) and COMPETE
(Programa Operacional Factores de Competitividade).info:eu-repo/semantics/publishedVersio
QCD and strongly coupled gauge theories : challenges and perspectives
We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe
A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)
Meeting abstrac
SIMULAÇÃO DE TRAUMA: UTILIZANDO UM ROTEIRO ESTRUTURADO
Objetivamos com essa pesquisa caracterizar o Roteiro de Trauma utilizado na disciplina intitulada “Sistematização da Assistência de Enfermagem ao Paciente Crítico” da UNIGRANRIO
- …
