7 research outputs found
An NF-κB and Slug Regulatory Loop Active in Early Vertebrate Mesoderm
BACKGROUND: In both Drosophila and the mouse, the zinc finger transcription factor Snail is required for mesoderm formation; its vertebrate paralog Slug (Snai2) appears to be required for neural crest formation in the chick and the clawed frog Xenopus laevis. Both Slug and Snail act to induce epithelial to mesenchymal transition (EMT) and to suppress apoptosis. METHODOLOGY & PRINCIPLE FINDINGS: Morpholino-based loss of function studies indicate that Slug is required for the normal expression of both mesodermal and neural crest markers in X. laevis. Both phenotypes are rescued by injection of RNA encoding the anti-apoptotic protein Bcl-xL; Bcl-xL's effects are dependent upon IκB kinase-mediated activation of the bipartite transcription factor NF-κB. NF-κB, in turn, directly up-regulates levels of Slug and Snail RNAs. Slug indirectly up-regulates levels of RNAs encoding the NF-κB subunit proteins RelA, Rel2, and Rel3, and directly down-regulates levels of the pro-apopotic Caspase-9 RNA. CONCLUSIONS/SIGNIFICANCE: These studies reveal a Slug/Snail–NF-κB regulatory circuit, analogous to that present in the early Drosophila embryo, active during mesodermal formation in Xenopus. This is a regulatory interaction of significance both in development and in the course of inflammatory and metastatic disease
Qualitative and Quantitative Analysis of 17 Different Types of Tetra- and Pentacyclic Triterpenic Acids in Boswellia papyrifera by a Semi-Automatic Homomodal 2D HPLC method
Frankincense essential oil prepared from hydrodistillation of <it>Boswellia sacra</it> gum resins induces human pancreatic cancer cell death in cultures and in a xenograft murine model
<p>Abstract</p> <p>Background</p> <p>Regardless of the availability of therapeutic options, the overall 5-year survival for patients diagnosed with pancreatic cancer remains less than 5%. Gum resins from <it>Boswellia</it> species, also known as frankincense, have been used as a major ingredient in Ayurvedic and Chinese medicine to treat a variety of health-related conditions. Both frankincense chemical extracts and essential oil prepared from <it>Boswellia</it> species gum resins exhibit anti-neoplastic activity, and have been investigated as potential anti-cancer agents. The goals of this study are to identify optimal condition for preparing frankincense essential oil that possesses potent anti-tumor activity, and to evaluate the activity in both cultured human pancreatic cancer cells and a xenograft mouse cancer model.</p> <p>Methods</p> <p><it>Boswellia sacra</it> gum resins were hydrodistilled at 78°C; and essential oil distillate fractions were collected at different durations (Fraction I at 0–2 h, Fraction II at 8–10 h, and Fraction III at 11–12 h). Hydrodistillation of the second half of gum resins was performed at 100°C; and distillate was collected at 11–12 h (Fraction IV). Chemical compositions were identified by gas chromatography–mass spectrometry (GC-MS); and total boswellic acids contents were quantified by high-performance liquid chromatography (HPLC). Frankincense essential oil-modulated pancreatic tumor cell viability and cytotoxicity were determined by colorimetric assays. Levels of apoptotic markers, signaling molecules, and cell cycle regulators expression were characterized by Western blot analysis. A heterotopic (subcutaneous) human pancreatic cancer xenograft nude mouse model was used to evaluate anti-tumor capability of Fraction IV frankincense essential oil <it>in vivo</it>. Frankincense essential oil-induced tumor cytostatic and cytotoxic activities in animals were assessed by immunohistochemistry.</p> <p>Results</p> <p>Longer duration and higher temperature hydrodistillation produced more abundant high molecular weight compounds, including boswellic acids, in frankincense essential oil fraactions. Human pancreatic cancer cells were sensitive to Fractions III and IV (containing higher molecular weight compounds) treatment with suppressed cell viability and increased cell death. Essential oil activated the caspase-dependent apoptotic pathway, induced a rapid and transient activation of Akt and Erk1/2, and suppressed levels of cyclin D1 cdk4 expression in cultured pancreatic cancer cells. In addition, <it>Boswellia sacra</it> essential oil Fraction IV exhibited anti-proliferative and pro-apoptotic activities against pancreatic tumors in the heterotopic xenograft mouse model.</p> <p>Conclusion</p> <p>All fractions of frankincense essential oil from <it>Boswellia sacra</it> are capable of suppressing viability and inducing apoptosis of a panel of human pancreatic cancer cell lines. Potency of essential oil-suppressed tumor cell viability may be associated with the greater abundance of high molecular weight compounds in Fractions III and IV. Although chemical component(s) responsible for tumor cell cytotoxicity remains undefined, crude essential oil prepared from hydrodistillation of <it>Boswellia sacra</it> gum resins might be a useful alternative therapeutic agent for treating patients with pancreatic adenocarcinoma, an aggressive cancer with poor prognosis.</p
Acetyl-11-keto-β-boswellic acid enhances the cisplatin sensitivity of non-small cell lung cancer cells through cell cycle arrest, apoptosis induction, and autophagy suppression via p21-dependent signaling pathway
Dietary compounds as potent inhibitors of the signal transducers and activators of transcription (STAT) 3 regulatory network
Signal transducers and activators of transcription (STAT) proteins were described as a family of latent cytosolic transcription factors whose activation is dependent on phosphorylation via growth factor- and cytokine-membrane receptors including interferon and interleukin, or by non-receptor intracellular tyrosine kinases, including Src. A vast majority of natural substances are capable of modulating mitogenic signals, cell survival, apoptosis, cell cycle regulation, angiogenesis as well as processes involved in metastasis development. The inhibition of STAT3 phosphorylation by natural and dietary compounds leads to decreased protein expression of STAT3 targets essentially involved in regulation of the cell cycle and apoptotic cell death. This review details the cell signaling pathways involving STAT transcription factors as well as the corresponding compounds from nature able to interfere with this regulatory system in human cancer
