376 research outputs found
Gravitational waves from single neutron stars: an advanced detector era survey
With the doors beginning to swing open on the new gravitational wave
astronomy, this review provides an up-to-date survey of the most important
physical mechanisms that could lead to emission of potentially detectable
gravitational radiation from isolated and accreting neutron stars. In
particular we discuss the gravitational wave-driven instability and
asteroseismology formalism of the f- and r-modes, the different ways that a
neutron star could form and sustain a non-axisymmetric quadrupolar "mountain"
deformation, the excitation of oscillations during magnetar flares and the
possible gravitational wave signature of pulsar glitches. We focus on progress
made in the recent years in each topic, make a fresh assessment of the
gravitational wave detectability of each mechanism and, finally, highlight key
problems and desiderata for future work.Comment: 39 pages, 12 figures, 2 tables. Chapter of the book "Physics and
Astrophysics of Neutron Stars", NewCompStar COST Action 1304. Minor
corrections to match published versio
Tumor-induced STAT3 activation in monocytic myeloid-derived suppressor cells enhances stemness and mesenchymal properties in human pancreatic cancer
Pancreatic cancer (PC) mobilizes myeloid cells from the bone marrow to the tumor where they promote tumor growth and proliferation. Cancer stem cells (CSCs) are a population of tumor cells that are responsible for tumor initiation. Aldehyde dehydrogenase-1 activity in PC identifies CSCs, and its activity has been correlated with poor overall prognosis in human PC. Myeloid cells have been shown to impact tumor stemness, but the impact of immunosuppressive tumor-infiltrating granulocytic and monocytic myeloid-derived suppressor cells (Mo-MDSC) on ALDH1(Bright) CSCs and epithelial to mesenchymal transition is not well understood. In this study, we demonstrate that Mo-MDSC (CD11b(+)/Gr1(+)/Ly6G(−)/Ly6C(hi)) significantly increase the frequency of ALDH1(Bright) CSCs in a mouse model of PC. Additionally, there was significant upregulation of genes associated with epithelial to mesenchymal transition. We also found that human PC converts CD14(+) peripheral blood monocytes into Mo-MDSC (CD14(+)/HLA-DR(low/−)) in vitro, and this transformation is dependent on the activation of the STAT3 pathway. In turn, these Mo-MDSC increase the frequency of ALDH1(Bright) CSCs and promote mesenchymal features of tumor cells. Finally, blockade of STAT3 activation reversed the increase in ALDH1(Bright) CSCs. These data suggest that the PC tumor microenvironment transforms monocytes to Mo-MDSC by STAT3 activation, and these cells increase the frequency of ALDH1(Bright) CSCs. Therefore, targeting STAT3 activation may be an effective therapeutic strategy in targeting CSCs in PC. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00262-014-1527-x) contains supplementary material, which is available to authorized users
Playing God? Synthetic biology as a theological and ethical challenge
In the ethical debate over synthetic biology the formula “playing god” is widely used in order to attack this new branch of biotechnology. The article analyses, contextualizes and criticises this usage with respect to the theological concepts of creation, sin and humans as created in the image of God. Against the background of these theological understandings an ethical corridor of how to responsibly cope with the societal challenges of synthetic biology is presented
Radiological-pathological correlation of pleomorphic liposarcoma of the anterior mediastinum in a 17-year-old girl
Liposarcoma is a soft-tissue sarcoma typically seen in adults. It is extremely rare in children. It most often occurs in the extremities or in the retroperitoneum. We present a very rare case of an anterior mediastinal liposarcoma of the pleomorphic subtype in a 17-year-old girl, along with radiological and pathological correlation. The location, patient age and histological subtype are exceedingly uncommon for this tumor
Epithelial ovarian cancer stem-like cells expressing α-gal epitopes increase the immunogenicity of tumor associated antigens
The ProPrems trial: investigating the effects of probiotics on late onset sepsis in very preterm infants
BACKGROUND: Late onset sepsis is a frequent complication of prematurity associated with increased mortality and morbidity. The commensal bacteria of the gastrointestinal tract play a key role in the development of healthy immune responses. Healthy term infants acquire these commensal organisms rapidly after birth. However, colonisation in preterm infants is adversely affected by delivery mode, antibiotic treatment and the intensive care environment. Altered microbiota composition may lead to increased colonisation with pathogenic bacteria, poor immune development and susceptibility to sepsis in the preterm infant.Probiotics are live microorganisms, which when administered in adequate amounts confer health benefits on the host. Amongst numerous bacteriocidal and nutritional roles, they may also favourably modulate host immune responses in local and remote tissues. Meta-analyses of probiotic supplementation in preterm infants report a reduction in mortality and necrotising enterocolitis. Studies with sepsis as an outcome have reported mixed results to date.Allergic diseases are increasing in incidence in "westernised" countries. There is evidence that probiotics may reduce the incidence of these diseases by altering the intestinal microbiota to influence immune function. METHODS/DESIGN: This is a multi-centre, randomised, double blinded, placebo controlled trial investigating supplementing preterm infants born at < 32 weeks' gestation weighing < 1500 g, with a probiotic combination (Bifidobacterium infantis, Streptococcus thermophilus and Bifidobacterium lactis). A total of 1,100 subjects are being recruited in Australia and New Zealand. Infants commence the allocated intervention from soon after the start of feeds until discharge home or term corrected age. The primary outcome is the incidence of at least one episode of definite (blood culture positive) late onset sepsis before 40 weeks corrected age or discharge home. Secondary outcomes include: Necrotising enterocolitis, mortality, antibiotic usage, time to establish full enteral feeds, duration of hospital stay, growth measurements at 6 and 12 months' corrected age and evidence of atopic conditions at 12 months' corrected age. DISCUSSION: Results from previous studies on the use of probiotics to prevent diseases in preterm infants are promising. However, a large clinical trial is required to address outstanding issues regarding safety and efficacy in this vulnerable population. This study will address these important issues. TRIAL REGISTRATION: Australia and New Zealand Clinical Trials Register (ANZCTR): ACTRN012607000144415The product "ABC Dophilus Probiotic Powder for Infants®", Solgar, USA has its 3 probiotics strains registered with the Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ--German Collection of Microorganisms and Cell Cultures) as BB-12 15954, B-02 96579, Th-4 15957
Self-prioritization and perceptual matching: The effects of temporal construal.
Recent research has revealed that self-referential processing enhances perceptual judgments - the so-called self-prioritization effect. The extent and origin of this effect remains unknown, however. Noting the multifaceted nature of the self, here we hypothesized that temporal influences on self-construal (i.e., past/future-self continuity) may serve as an important determinant of stimulus prioritization. Specifically, as representations of the self increase in abstraction as a function of temporal distance (i.e., distance from now), self-prioritization may only emerge when stimuli are associated with the current self. The results of three experiments supported this prediction. Self-relevance only enhanced performance in a standard perceptual-matching task when stimuli (i.e., geometric shapes) were connected with the current self; representations of the self in the future (Expts. 1 & 2) and past (Expt. 3) failed to facilitate decision making. To identify the processes underlying task performance, data were interrogated using a hierarchical drift diffusion model (HDDM) approach. Results of these analyses revealed that self-prioritization was underpinned by a stimulus bias (i.e., rate of information uptake). Collectively, these findings elucidate when and how self-relevance influences decisional processing
High-performance liquid chromatography–tandem mass spectrometry in the identification and determination of phase I and phase II drug metabolites
Applications of tandem mass spectrometry (MS/MS) techniques coupled with high-performance liquid chromatography (HPLC) in the identification and determination of phase I and phase II drug metabolites are reviewed with an emphasis on recent papers published predominantly within the last 6 years (2002–2007) reporting the employment of atmospheric pressure ionization techniques as the most promising approach for a sensitive detection, positive identification and quantitation of metabolites in complex biological matrices. This review is devoted to in vitro and in vivo drug biotransformation in humans and animals. The first step preceding an HPLC-MS bioanalysis consists in the choice of suitable sample preparation procedures (biomatrix sampling, homogenization, internal standard addition, deproteination, centrifugation, extraction). The subsequent step is the right optimization of chromatographic conditions providing the required separation selectivity, analysis time and also good compatibility with the MS detection. This is usually not accessible without the employment of the parent drug and synthesized or isolated chemical standards of expected phase I and sometimes also phase II metabolites. The incorporation of additional detectors (photodiode-array UV, fluorescence, polarimetric and others) between the HPLC and MS instruments can result in valuable analytical information supplementing MS results. The relation among the structural changes caused by metabolic reactions and corresponding shifts in the retention behavior in reversed-phase systems is discussed as supporting information for identification of the metabolite. The first and basic step in the interpretation of mass spectra is always the molecular weight (MW) determination based on the presence of protonated molecules [M+H]+ and sometimes adducts with ammonium or alkali-metal ions, observed in the positive-ion full-scan mass spectra. The MW determination can be confirmed by the [M-H]- ion for metabolites providing a signal in negative-ion mass spectra. MS/MS is a worthy tool for further structural characterization because of the occurrence of characteristic fragment ions, either MSn analysis for studying the fragmentation patterns using trap-based analyzers or high mass accuracy measurements for elemental composition determination using time of flight based or Fourier transform mass analyzers. The correlation between typical functional groups found in phase I and phase II drug metabolites and corresponding neutral losses is generalized and illustrated for selected examples. The choice of a suitable ionization technique and polarity mode in relation to the metabolite structure is discussed as well
Finding the engram.
Many attempts have been made to localize the physical trace of a memory, or engram, in the brain. However, until recently, engrams have remained largely elusive. In this Review, we develop four defining criteria that enable us to critically assess the recent progress that has been made towards finding the engram. Recent \u27capture\u27 studies use novel approaches to tag populations of neurons that are active during memory encoding, thereby allowing these engram-associated neurons to be manipulated at later times. We propose that findings from these capture studies represent considerable progress in allowing us to observe, erase and express the engram
Purinergic signalling and immune cells
This review article provides a historical perspective on the role of purinergic signalling in the regulation of various subsets of immune cells from early discoveries to current understanding. It is now recognised that adenosine 5'-triphosphate (ATP) and other nucleotides are released from cells following stress or injury. They can act on virtually all subsets of immune cells through a spectrum of P2X ligand-gated ion channels and G protein-coupled P2Y receptors. Furthermore, ATP is rapidly degraded into adenosine by ectonucleotidases such as CD39 and CD73, and adenosine exerts additional regulatory effects through its own receptors. The resulting effect ranges from stimulation to tolerance depending on the amount and time courses of nucleotides released, and the balance between ATP and adenosine. This review identifies the various receptors involved in the different subsets of immune cells and their effects on the function of these cells
- …
