4,267 research outputs found
Characteristics of C-4 photosynthesis in stems and petioles of C-3 flowering plants
Most plants are known as C-3 plants because the first product of photosynthetic CO2 fixation is a three-carbon compound. C-4 plants, which use an alternative pathway in which the first product is a four-carbon compound, have evolved independently many times and are found in at least 18 families. In addition to differences in their biochemistry, photosynthetic organs of C-4 plants show alterations in their anatomy and ultrastructure. Little is known about whether the biochemical or anatomical characteristics of C-4 photosynthesis evolved first. Here we report that tobacco, a typical C-3 plant, shows characteristics of C-4 photosynthesis in cells of stems and petioles that surround the xylem and phloem, and that these cells are supplied with carbon for photosynthesis from the vascular system and not from stomata. These photosynthetic cells possess high activities of enzymes characteristic of C-4 photosynthesis, which allow the decarboxylation of four-carbon organic acids from the xylem and phloem, thus releasing CO2 for photosynthesis. These biochemical characteristics of C-4 photosynthesis in cells around the vascular bundles of stems of C-3 plants might explain why C-4 photosynthesis has evolved independently many times
Tuning of Human Modulation Filters Is Carrier-Frequency Dependent
Licensed under the Creative Commons Attribution License
The role of ongoing dendritic oscillations in single-neuron dynamics
The dendritic tree contributes significantly to the elementary computations a neuron performs while converting its synaptic inputs into action potential output. Traditionally, these computations have been characterized as temporally local, near-instantaneous mappings from the current input of the cell to its current output, brought about by somatic summation of dendritic contributions that are generated in spatially localized functional compartments. However, recent evidence about the presence of oscillations in dendrites suggests a qualitatively different mode of operation: the instantaneous phase of such oscillations can depend on a long history of inputs, and under appropriate conditions, even dendritic oscillators that are remote may interact through synchronization. Here, we develop a mathematical framework to analyze the interactions of local dendritic oscillations, and the way these interactions influence single cell computations. Combining weakly coupled oscillator methods with cable theoretic arguments, we derive phase-locking states for multiple oscillating dendritic compartments. We characterize how the phase-locking properties depend on key parameters of the oscillating dendrite: the electrotonic properties of the (active) dendritic segment, and the intrinsic properties of the dendritic oscillators. As a direct consequence, we show how input to the dendrites can modulate phase-locking behavior and hence global dendritic coherence. In turn, dendritic coherence is able to gate the integration and propagation of synaptic signals to the soma, ultimately leading to an effective control of somatic spike generation. Our results suggest that dendritic oscillations enable the dendritic tree to operate on more global temporal and spatial scales than previously thought
Thrombosis Is Reduced by Inhibition of COX-1, but Unaffected by Inhibition of COX-2, in an Acute Model of Platelet Activation in the Mouse
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Ferritins: furnishing proteins with iron
Ferritins are a superfamily of iron oxidation, storage and mineralization proteins found throughout the animal, plant, and microbial kingdoms. The majority of ferritins consist of 24 subunits that individually fold into 4-α-helix bundles and assemble in a highly symmetric manner to form an approximately spherical protein coat around a central cavity into which an iron-containing mineral can be formed. Channels through the coat at inter-subunit contact points facilitate passage of iron ions to and from the central cavity, and intrasubunit catalytic sites, called ferroxidase centers, drive Fe2+ oxidation and O2 reduction. Though the different members of the superfamily share a common structure, there is often little amino acid sequence identity between them. Even where there is a high degree of sequence identity between two ferritins there can be major differences in how the proteins handle iron. In this review we describe some of the important structural features of ferritins and their mineralized iron cores and examine in detail how three selected ferritins oxidise Fe2+ in order to explore the mechanistic variations that exist amongst ferritins. We suggest that the mechanistic differences reflect differing evolutionary pressures on amino acid sequences, and that these differing pressures are a consequence of different primary functions for different ferritins
The politics of the teaching of reading
Historically, political debates have broken out over how to teach reading in primary schools and infant classrooms. These debates and “reading wars” have often resulted from public concerns and media reportage of a fall in reading standards. They also reflect the importance placed on learning to read by parents, teachers, employers, and politicians. Public and media-driven controversies over the teaching of reading have resulted in intense public and professional debates over which specific methods and materials to use with beginning readers and with children who have reading difficulties. Recently, such debates have led to a renewed emphasis on reading proficiency and “standardized” approaches to teaching reading and engaging with literacy. The universal acceptance of the importance of learning to read has also led to vested interests in specific methods, reading programmes, and early literacy assessments amongst professional, business, commercial, and parental lobbying groups. This article traces these debates and the resulting growing support for a quantitative reductionist approach to early-reading programmes
Visual ecology of aphids – a critical review on the role of colours in host finding
We review the rich literature on behavioural responses of aphids (Hemiptera: Aphididae) to stimuli of different colours. Only in one species there are adequate physiological data on spectral sensitivity to explain behaviour crisply in mechanistic terms.
Because of the great interest in aphid responses to coloured targets from an evolutionary, ecological and applied perspective, there is a substantial need to expand these studies to more species of aphids, and to quantify spectral properties of stimuli rigorously. We show that aphid responses to colours, at least for some species, are likely based on a specific colour opponency mechanism, with positive input from the green domain of the spectrum and negative input from the blue and/or UV region.
We further demonstrate that the usual yellow preference of aphids encountered in field experiments is not a true colour preference but involves additional brightness effects. We discuss the implications for agriculture and sensory ecology, with special respect to the recent debate on autumn leaf colouration. We illustrate that recent evolutionary theories concerning aphid–tree interactions imply far-reaching assumptions on aphid responses to colours
that are not likely to hold. Finally we also discuss the
implications for developing and optimising strategies
of aphid control and monitoring
Pleosporales
One hundred and five generic types of Pleosporales are described and illustrated. A brief introduction and detailed history with short notes on morphology, molecular phylogeny as well as a general conclusion of each genus are provided. For those genera where the type or a representative specimen is unavailable, a brief note is given. Altogether 174 genera of Pleosporales are treated. Phaeotrichaceae as well as Kriegeriella, Zeuctomorpha and Muroia are excluded from Pleosporales. Based on the multigene phylogenetic analysis, the suborder Massarineae is emended to accommodate five families, viz. Lentitheciaceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae and Trematosphaeriaceae
Sex-linked mating strategies diverge with a manipulation of genital salience
Trivers (Sexual selection and the descent of man, Aldine-Atherton, Chicago, pp 136–179, 1972) proposed that evolutionary factors should favor divergent mating strategies for males versus females. Such differences may be less pronounced among human beings than other animals and social norms and sex roles are also pertinent influences. The present experiment (N = 133 college undergraduates, 74 female) sought to bypass some of these other influences. Participants were randomly assigned to a condition designed to increase attention to the genital region (a downward pointing arrow) or not (an upward pointing arrow). They then reported on their interest in short-term (e.g., a one-night stand) and long-term (e.g., a potential marital partner) mating opportunities. A theory-consistent three-way interaction occurred such that the genital salience manipulation primed a shorter-term reproductive strategy among men and a longer-term reproductive strategy among women. The results provide unique support for evolution-linked ideas about sex differences in the form of a role for bodily attention
Sphalerons and the Electroweak Phase Transition in Models with Higher Scalar Representations
In this work we investigate the sphaleron solution in a
gauge theory, which also encompasses the Standard Model, with higher scalar
representation(s) (). We show that the field profiles
describing the sphaleron in higher scalar multiplet, have similar trends like
the doublet case with respect to the radial distance. We compute the sphaleron
energy and find that it scales linearly with the vacuum expectation value of
the scalar field and its slope depends on the representation. We also
investigate the effect of gauge field and find that it is small for the
physical value of the mixing angle, and resembles the case for the
doublet. For higher representations, we show that the criterion for strong
first order phase transition, , is relaxed with respect to
the doublet case, i.e. .Comment: 20 pages, 5 figures & 1 table, published versio
- …
