1,176 research outputs found

    Quantum networks reveal quantum nonlocality

    Full text link
    The results of local measurements on some composite quantum systems cannot be reproduced classically. This impossibility, known as quantum nonlocality, represents a milestone in the foundations of quantum theory. Quantum nonlocality is also a valuable resource for information processing tasks, e.g. quantum communication, quantum key distribution, quantum state estimation, or randomness extraction. Still, deciding if a quantum state is nonlocal remains a challenging problem. Here we introduce a novel approach to this question: we study the nonlocal properties of quantum states when distributed and measured in networks. Using our framework, we show how any one-way entanglement distillable state leads to nonlocal correlations. Then, we prove that nonlocality is a non-additive resource, which can be activated. There exist states, local at the single-copy level, that become nonlocal when taking several copies of it. Our results imply that the nonlocality of quantum states strongly depends on the measurement context.Comment: 4 + 3 pages, 4 figure

    Exotic complex Hadamard matrices, and their equivalence

    Full text link
    In this paper we use a design theoretical approach to construct new, previously unknown complex Hadamard matrices. Our methods generalize and extend the earlier results of de la Harpe--Jones and Munemasa--Watatani and offer a theoretical explanation for the existence of some sporadic examples of complex Hadamard matrices in the existing literature. As it is increasingly difficult to distinguish inequivalent matrices from each other, we propose a new invariant, the fingerprint of complex Hadamard matrices. As a side result, we refute a conjecture of Koukouvinos et al. on (n-8)x(n-8) minors of real Hadamard matrices.Comment: 10 pages. To appear in Cryptography and Communications: Discrete Structures, Boolean Functions and Sequence

    Quantum-Classical Correspondence of Dynamical Observables, Quantization and the Time of Arrival Correspondence Problem

    Full text link
    We raise the problem of constructing quantum observables that have classical counterparts without quantization. Specifically we seek to define and motivate a solution to the quantum-classical correspondence problem independent from quantization and discuss the general insufficiency of prescriptive quantization, particularly the Weyl quantization. We demonstrate our points by constructing time of arrival operators without quantization and from these recover their classical counterparts

    The problem of mutually unbiased bases in dimension 6

    Get PDF
    We outline a discretization approach to determine the maximal number of mutually unbiased bases in dimension 6. We describe the basic ideas and introduce the most important definitions to tackle this famous open problem which has been open for the last 10 years. Some preliminary results are also listed

    Characterizing Operations Preserving Separability Measures via Linear Preserver Problems

    Full text link
    We use classical results from the theory of linear preserver problems to characterize operators that send the set of pure states with Schmidt rank no greater than k back into itself, extending known results characterizing operators that send separable pure states to separable pure states. We also provide a new proof of an analogous statement in the multipartite setting. We use these results to develop a bipartite version of a classical result about the structure of maps that preserve rank-1 operators and then characterize the isometries for two families of norms that have recently been studied in quantum information theory. We see in particular that for k at least 2 the operator norms induced by states with Schmidt rank k are invariant only under local unitaries, the swap operator and the transpose map. However, in the k = 1 case there is an additional isometry: the partial transpose map.Comment: 16 pages, typos corrected, references added, proof of Theorem 4.3 simplified and clarifie

    Fundamental limitations for quantum and nano thermodynamics

    Get PDF
    The relationship between thermodynamics and statistical physics is valid in the thermodynamic limit - when the number of particles becomes very large. Here, we study thermodynamics in the opposite regime - at both the nano scale, and when quantum effects become important. Applying results from quantum information theory we construct a theory of thermodynamics in these limits. We derive general criteria for thermodynamical state transformations, and as special cases, find two free energies: one that quantifies the deterministically extractable work from a small system in contact with a heat bath, and the other that quantifies the reverse process. We find that there are fundamental limitations on work extraction from nonequilibrium states, owing to finite size effects and quantum coherences. This implies that thermodynamical transitions are generically irreversible at this scale. As one application of these methods, we analyse the efficiency of small heat engines and find that they are irreversible during the adiabatic stages of the cycle.Comment: Final, published versio

    Quantum Correlations in Multipartite Quantum Systems

    Full text link
    We review some concepts and properties of quantum correlations, in particular multipartite measures, geometric measures and monogamy relations. We also discuss the relation between classical and total correlationsComment: to be published as a chapter of the book "Lectures on general quantum correlations and their applications" edited by F. Fanchini, D. Soares-Pinto, and G. Adesso (Springer, 2017

    Gaussian bosonic synergy: quantum communication via realistic channels of zero quantum capacity

    Full text link
    As with classical information, error-correcting codes enable reliable transmission of quantum information through noisy or lossy channels. In contrast to the classical theory, imperfect quantum channels exhibit a strong kind of synergy: there exist pairs of discrete memoryless quantum channels, each of zero quantum capacity, which acquire positive quantum capacity when used together. Here we show that this "superactivation" phenomenon also occurs in the more realistic setting of optical channels with attenuation and Gaussian noise. This paves the way for its experimental realization and application in real-world communications systems.Comment: 5 pages, 4 figures, one appendi

    Why should we care about quantum discord?

    Full text link
    Entanglement is a central feature of quantum theory. Mathematical properties and physical applications of pure state entanglement make it a template to study quantum correlations. However, an extension of entanglement measures to mixed states in terms of separability does not always correspond to all the operational aspects. Quantum discord measures allow an alternative way to extend the idea of quantum correlations to mixed states. In many cases these extensions are motivated by physical scenarios and quantum information protocols. In this chapter we discuss several settings involving correlated quantum systems, ranging from distributed gates to detectors testing quantum fields. In each setting we show how entanglement fails to capture the relevant features of the correlated system, and discuss the role of discord as a possible alternative.Comment: Written for "Lectures on general quantum correlations and their applications

    Qubit portrait of the photon-number tomogram and separability of two-mode light states

    Full text link
    In view of the photon-number tomograms of two-mode light states, using the qubit-portrait method for studying the probability distributions with infinite outputs, the separability and entanglement detection of the states are studied. Examples of entangled Gaussian state and Schr\"{o}dinger cat state are discussed.Comment: 20 pages, 6 figures, TeX file, to appear in Journal of Russian Laser Researc
    corecore