2,455 research outputs found
Nanoparticles in optic nerve trauma: nanoscaffolding, visualization and regeneration
Session 1 - Nanotechnology / Vision Restoration: Concepts, Possibilities, Challengespostprin
Nanoscale technologies: nano-knitting, healing powers and hemostasis
Session 2 - Nanotechnology / Vision Restoration: Clinical Usespostprin
Estimating the burden of respiratory syncytial virus (RSV) on respiratory hospital admissions in children less than five years of age in England, 2007-2012
BACKGROUND: Respiratory syncytial virus (RSV) is a leading cause of hospital admission in young children. With several RSV vaccines candidates undergoing clinical trials, recent estimates of RSV burden are required to provide a baseline for vaccine impact studies. OBJECTIVES: To estimate the number of RSV-associated hospital admissions in children aged <5 years in England over a 5-year period from 2007 using ecological time series modelling of national hospital administrative data. PATIENTS/METHODS: Multiple linear regression modelling of weekly time series of laboratory surveillance data and Hospital Episode Statistics (HES) data was used to estimate the number of hospital admissions due to major respiratory pathogens including RSV in children <5 years of age in England from mid-2007 to mid-2012, stratified by age group (<6 months, 6-11 months, 1-4 years) and primary diagnosis: bronchiolitis, pneumonia, unspecified lower respiratory tract infection (LRTI), bronchitis and upper respiratory tract infection (URTI). RESULTS: On average, 33 561 (95% confidence interval 30 429-38 489) RSV-associated hospital admissions in children <5 years of age occurred annually from 2007 to 2012. Average annual admission rates were 35.1 (95% CI: 32.9-38.9) per 1000 children aged <1 year and 5.31 (95% CI: 4.5-6.6) per 1000 children aged 1-4 years. About 84% (95% CI: 81-91%) of RSV-associated admissions were for LRTI. The diagnosis-specific burden of RSV-associated admissions differed significantly by age group. CONCLUSIONS: RSV remains a significant cause of hospital admissions in young children in England. Individual-level analysis of RSV-associated admissions is required to fully describe the burden by age and risk group and identify optimal prevention strategies
A Self-assembling Nanomaterial Reduces Acute Brain Injury and Enhances Functional Recovery in a Rat Model of Hypertensive Intracerebral Hemorrhage
published_or_final_versio
Longitudinal 1H MRS of hamster superior colliculus following retinotectal deafferentation
Session: Applications of MRS to the Animal Brain - TRADpublished_or_final_versionThe 17th Scientific Meeting of the International Society for Magnetic Resonance in Medicine (ISMRM 2009), Honlolulu, HI., 18-24 April 2009. In Proceedings of ISMRM 17th Scientific Meeting & Exhibition, 200
Using the local density approximation and the LYP, BLYP, and B3LYP functionals within Reference--State One--Particle Density--Matrix Theory
For closed-shell systems, the local density approximation (LDA) and the LYP,
BLYP, and B3LYP functionals are shown to be compatible with reference-state
one-particle density-matrix theory, where this recently introduced formalism is
based on Brueckner-orbital theory and an energy functional that includes exact
exchange and a non-universal correlation-energy functional. The method is
demonstrated to reduce to a density functional theory when the
exchange-correlation energy-functional has a simplified form, i.e., its
integrand contains only the coordinates of two electron, say r1 and r2, and it
has a Dirac delta function -- delta(r1 - r2) -- as a factor. Since Brueckner
and Hartree--Fock orbitals are often very similar, any local exchange
functional that works well with Hartree--Fock theory is a reasonable
approximation with reference-state one-particle density-matrix theory. The LDA
approximation is also a reasonable approximation. However, the Colle--Salvetti
correlation-energy functional, and the LYP variant, are not ideal for the
method, since these are universal functionals. Nevertheless, they appear to
provide reasonable approximations. The B3LYP functional is derived using a
linear combination of two functionals: One is the BLYP functional; the other
uses exact exchange and a correlation-energy functional from the LDA.Comment: 26 Pages, 0 figures, RevTeX 4, Submitted to Mol. Phy
Challenges of Profile Likelihood Evaluation in Multi-Dimensional SUSY Scans
Statistical inference of the fundamental parameters of supersymmetric
theories is a challenging and active endeavor. Several sophisticated algorithms
have been employed to this end. While Markov-Chain Monte Carlo (MCMC) and
nested sampling techniques are geared towards Bayesian inference, they have
also been used to estimate frequentist confidence intervals based on the
profile likelihood ratio. We investigate the performance and appropriate
configuration of MultiNest, a nested sampling based algorithm, when used for
profile likelihood-based analyses both on toy models and on the parameter space
of the Constrained MSSM. We find that while the standard configuration is
appropriate for an accurate reconstruction of the Bayesian posterior, the
profile likelihood is poorly approximated. We identify a more appropriate
MultiNest configuration for profile likelihood analyses, which gives an
excellent exploration of the profile likelihood (albeit at a larger
computational cost), including the identification of the global maximum
likelihood value. We conclude that with the appropriate configuration MultiNest
is a suitable tool for profile likelihood studies, indicating previous claims
to the contrary are not well founded.Comment: 21 pages, 9 figures, 1 table; minor changes following referee report.
Matches version accepted by JHE
Quantifying Morphological Evolution from Low to High Redshifts
Establishing the morphological history of ordinary galaxies was one of the original goals for the Hubble Space Telescope, and remarkable progress toward achieving this this goal has been made. How much of this progress has been at the expense of the Hubble sequence? As we probe further out in redshift space, it seems time to re-examine the underlying significance of Hubble's tuning fork in light of the the spectacular and often bizarre morphological characteristics of high redshift galaxies. The aim of this review is to build a morphological bridge between high-redshift and low-redshift galaxy populations, by using quantitative morphological measures to determine the maximum redshift for which the Hubble sequence provides a meaningful description of the galaxy population. I will outline the various techniques used to quantify high-redshift galaxy morphology, highlight the aspects of the Hubble sequence being probed by these techniques, and indicate what is getting left behind. I will argue that at higher redshifts new techniques (and new ideas) that place less emphasis on classical morphology and more emphasis on the link between morphology and resolved stellar populations are needed in order to probe the evolutionary history of high-redshift galaxies
Automatic classification of field-collected dinoflagellates by artificial neural network
Automatic taxonomic categorisation of 23 species of dinoflagellates was demonstrated using field-collected specimens. These dinoflagellates have been responsible for the majority of toxic and noxious phytoplankton blooms which have occurred in the coastal waters of the European Union in recent years and make severe impact on the aquaculture industry. The performance by human 'expert' ecologists/taxonomists in identifying these species was compared to that achieved by 2 artificial neural network classifiers (multilayer perceptron and radial basis function networks) and 2 other statistical techniques, k-Nearest Neighbour and Quadratic Discriminant Analysis. The neural network classifiers outperform the classical statistical techniques. Over extended trials, the human experts averaged 85% while the radial basis network achieved a best performance of 83%, the multilayer perceptron 66%, k-Nearest Neighbour 60%, and the Quadratic Discriminant Analysis 56%
Single Cut Integration
We present an analytic technique for evaluating single cuts for one-loop
integrands, where exactly one propagator is taken to be on shell. Our method
extends the double-cut integration formalism of one-loop amplitudes to the
single-cut case. We argue that single cuts give meaningful information about
amplitudes when taken at the integrand level. We discuss applications to the
computation of tadpole coefficients.Comment: v2: corrected typo in abstrac
- …
