2,455 research outputs found

    Nanoparticles in optic nerve trauma: nanoscaffolding, visualization and regeneration

    Get PDF
    Session 1 - Nanotechnology / Vision Restoration: Concepts, Possibilities, Challengespostprin

    Nanoscale technologies: nano-knitting, healing powers and hemostasis

    Get PDF
    Session 2 - Nanotechnology / Vision Restoration: Clinical Usespostprin

    Estimating the burden of respiratory syncytial virus (RSV) on respiratory hospital admissions in children less than five years of age in England, 2007-2012

    Get PDF
    BACKGROUND: Respiratory syncytial virus (RSV) is a leading cause of hospital admission in young children. With several RSV vaccines candidates undergoing clinical trials, recent estimates of RSV burden are required to provide a baseline for vaccine impact studies. OBJECTIVES: To estimate the number of RSV-associated hospital admissions in children aged <5 years in England over a 5-year period from 2007 using ecological time series modelling of national hospital administrative data. PATIENTS/METHODS: Multiple linear regression modelling of weekly time series of laboratory surveillance data and Hospital Episode Statistics (HES) data was used to estimate the number of hospital admissions due to major respiratory pathogens including RSV in children <5 years of age in England from mid-2007 to mid-2012, stratified by age group (<6 months, 6-11 months, 1-4 years) and primary diagnosis: bronchiolitis, pneumonia, unspecified lower respiratory tract infection (LRTI), bronchitis and upper respiratory tract infection (URTI). RESULTS: On average, 33 561 (95% confidence interval 30 429-38 489) RSV-associated hospital admissions in children <5 years of age occurred annually from 2007 to 2012. Average annual admission rates were 35.1 (95% CI: 32.9-38.9) per 1000 children aged <1 year and 5.31 (95% CI: 4.5-6.6) per 1000 children aged 1-4 years. About 84% (95% CI: 81-91%) of RSV-associated admissions were for LRTI. The diagnosis-specific burden of RSV-associated admissions differed significantly by age group. CONCLUSIONS: RSV remains a significant cause of hospital admissions in young children in England. Individual-level analysis of RSV-associated admissions is required to fully describe the burden by age and risk group and identify optimal prevention strategies

    Longitudinal 1H MRS of hamster superior colliculus following retinotectal deafferentation

    Get PDF
    Session: Applications of MRS to the Animal Brain - TRADpublished_or_final_versionThe 17th Scientific Meeting of the International Society for Magnetic Resonance in Medicine (ISMRM 2009), Honlolulu, HI., 18-24 April 2009. In Proceedings of ISMRM 17th Scientific Meeting & Exhibition, 200

    Using the local density approximation and the LYP, BLYP, and B3LYP functionals within Reference--State One--Particle Density--Matrix Theory

    Full text link
    For closed-shell systems, the local density approximation (LDA) and the LYP, BLYP, and B3LYP functionals are shown to be compatible with reference-state one-particle density-matrix theory, where this recently introduced formalism is based on Brueckner-orbital theory and an energy functional that includes exact exchange and a non-universal correlation-energy functional. The method is demonstrated to reduce to a density functional theory when the exchange-correlation energy-functional has a simplified form, i.e., its integrand contains only the coordinates of two electron, say r1 and r2, and it has a Dirac delta function -- delta(r1 - r2) -- as a factor. Since Brueckner and Hartree--Fock orbitals are often very similar, any local exchange functional that works well with Hartree--Fock theory is a reasonable approximation with reference-state one-particle density-matrix theory. The LDA approximation is also a reasonable approximation. However, the Colle--Salvetti correlation-energy functional, and the LYP variant, are not ideal for the method, since these are universal functionals. Nevertheless, they appear to provide reasonable approximations. The B3LYP functional is derived using a linear combination of two functionals: One is the BLYP functional; the other uses exact exchange and a correlation-energy functional from the LDA.Comment: 26 Pages, 0 figures, RevTeX 4, Submitted to Mol. Phy

    Challenges of Profile Likelihood Evaluation in Multi-Dimensional SUSY Scans

    Get PDF
    Statistical inference of the fundamental parameters of supersymmetric theories is a challenging and active endeavor. Several sophisticated algorithms have been employed to this end. While Markov-Chain Monte Carlo (MCMC) and nested sampling techniques are geared towards Bayesian inference, they have also been used to estimate frequentist confidence intervals based on the profile likelihood ratio. We investigate the performance and appropriate configuration of MultiNest, a nested sampling based algorithm, when used for profile likelihood-based analyses both on toy models and on the parameter space of the Constrained MSSM. We find that while the standard configuration is appropriate for an accurate reconstruction of the Bayesian posterior, the profile likelihood is poorly approximated. We identify a more appropriate MultiNest configuration for profile likelihood analyses, which gives an excellent exploration of the profile likelihood (albeit at a larger computational cost), including the identification of the global maximum likelihood value. We conclude that with the appropriate configuration MultiNest is a suitable tool for profile likelihood studies, indicating previous claims to the contrary are not well founded.Comment: 21 pages, 9 figures, 1 table; minor changes following referee report. Matches version accepted by JHE

    Quantifying Morphological Evolution from Low to High Redshifts

    Get PDF
    Establishing the morphological history of ordinary galaxies was one of the original goals for the Hubble Space Telescope, and remarkable progress toward achieving this this goal has been made. How much of this progress has been at the expense of the Hubble sequence? As we probe further out in redshift space, it seems time to re-examine the underlying significance of Hubble's tuning fork in light of the the spectacular and often bizarre morphological characteristics of high redshift galaxies. The aim of this review is to build a morphological bridge between high-redshift and low-redshift galaxy populations, by using quantitative morphological measures to determine the maximum redshift for which the Hubble sequence provides a meaningful description of the galaxy population. I will outline the various techniques used to quantify high-redshift galaxy morphology, highlight the aspects of the Hubble sequence being probed by these techniques, and indicate what is getting left behind. I will argue that at higher redshifts new techniques (and new ideas) that place less emphasis on classical morphology and more emphasis on the link between morphology and resolved stellar populations are needed in order to probe the evolutionary history of high-redshift galaxies

    Automatic classification of field-collected dinoflagellates by artificial neural network

    Get PDF
    Automatic taxonomic categorisation of 23 species of dinoflagellates was demonstrated using field-collected specimens. These dinoflagellates have been responsible for the majority of toxic and noxious phytoplankton blooms which have occurred in the coastal waters of the European Union in recent years and make severe impact on the aquaculture industry. The performance by human 'expert' ecologists/taxonomists in identifying these species was compared to that achieved by 2 artificial neural network classifiers (multilayer perceptron and radial basis function networks) and 2 other statistical techniques, k-Nearest Neighbour and Quadratic Discriminant Analysis. The neural network classifiers outperform the classical statistical techniques. Over extended trials, the human experts averaged 85% while the radial basis network achieved a best performance of 83%, the multilayer perceptron 66%, k-Nearest Neighbour 60%, and the Quadratic Discriminant Analysis 56%

    Single Cut Integration

    Get PDF
    We present an analytic technique for evaluating single cuts for one-loop integrands, where exactly one propagator is taken to be on shell. Our method extends the double-cut integration formalism of one-loop amplitudes to the single-cut case. We argue that single cuts give meaningful information about amplitudes when taken at the integrand level. We discuss applications to the computation of tadpole coefficients.Comment: v2: corrected typo in abstrac
    corecore