103 research outputs found
Histone deacetylase adaptation in single ventricle heart disease and a young animal model of right ventricular hypertrophy.
BackgroundHistone deacetylase (HDAC) inhibitors are promising therapeutics for various forms of cardiac diseases. The purpose of this study was to assess cardiac HDAC catalytic activity and expression in children with single ventricle (SV) heart disease of right ventricular morphology, as well as in a rodent model of right ventricular hypertrophy (RVH).MethodsHomogenates of right ventricle (RV) explants from non-failing controls and children born with a SV were assayed for HDAC catalytic activity and HDAC isoform expression. Postnatal 1-day-old rat pups were placed in hypoxic conditions, and echocardiographic analysis, gene expression, HDAC catalytic activity, and isoform expression studies of the RV were performed.ResultsClass I, IIa, and IIb HDAC catalytic activity and protein expression were elevated in the hearts of children born with a SV. Hypoxic neonatal rats demonstrated RVH, abnormal gene expression, elevated class I and class IIb HDAC catalytic activity, and protein expression in the RV compared with those in the control.ConclusionsThese data suggest that myocardial HDAC adaptations occur in the SV heart and could represent a novel therapeutic target. Although further characterization of the hypoxic neonatal rat is needed, this animal model may be suitable for preclinical investigations of pediatric RV disease and could serve as a useful model for future mechanistic studies
Probing the Informational and Regulatory Plasticity of a Transcription Factor DNA–Binding Domain
Transcription factors have two functional constraints on their evolution: (1) their binding sites must have enough information to be distinguishable from all other sequences in the genome, and (2) they must bind these sites with an affinity that appropriately modulates the rate of transcription. Since both are determined by the biophysical properties of the DNA–binding domain, selection on one will ultimately affect the other. We were interested in understanding how plastic the informational and regulatory properties of a transcription factor are and how transcription factors evolve to balance these constraints. To study this, we developed an in vivo selection system in Escherichia coli to identify variants of the helix-turn-helix transcription factor MarA that bind different sets of binding sites with varying degrees of degeneracy. Unlike previous in vitro methods used to identify novel DNA binders and to probe the plasticity of the binding domain, our selections were done within the context of the initiation complex, selecting for both specific binding within the genome and for a physiologically significant strength of interaction to maintain function of the factor. Using MITOMI, quantitative PCR, and a binding site fitness assay, we characterized the binding, function, and fitness of some of these variants. We observed that a large range of binding preferences, information contents, and activities could be accessed with a few mutations, suggesting that transcriptional regulatory networks are highly adaptable and expandable
Neurophysiologic effects of spinal manipulation in patients with chronic low back pain
<p>Abstract</p> <p>Background</p> <p>While there is growing evidence for the efficacy of SM to treat LBP, little is known on the mechanisms and physiologic effects of these treatments. Accordingly, the purpose of this study was to determine whether SM alters the amplitude of the motor evoked potential (MEP) or the short-latency stretch reflex of the erector spinae muscles, and whether these physiologic responses depend on whether SM causes an audible joint sound.</p> <p>Methods</p> <p>We used transcranial magnetic stimulation to elicit MEPs and electromechanical tapping to elicit short-latency stretch reflexes in 10 patients with chronic LBP and 10 asymptomatic controls. Neurophysiologic outcomes were measured before and after SM. Changes in MEP and stretch reflex amplitude were examined based on patient grouping (LBP vs. controls), and whether SM caused an audible joint sound.</p> <p>Results</p> <p>SM did not alter the erector spinae MEP amplitude in patients with LBP (0.80 ± 0.33 vs. 0.80 ± 0.30 μV) or in asymptomatic controls (0.56 ± 0.09 vs. 0.57 ± 0.06 μV). Similarly, SM did not alter the erector spinae stretch reflex amplitude in patients with LBP (0.66 ± 0.12 vs. 0.66 ± 0.15 μV) or in asymptomatic controls (0.60 ± 0.09 vs. 0.55 ± 0.08 μV). Interestingly, study participants exhibiting an audible response exhibited a 20% decrease in the stretch reflex (p < 0.05).</p> <p>Conclusions</p> <p>These findings suggest that a single SM treatment does not systematically alter corticospinal or stretch reflex excitability of the erector spinae muscles (when assessed ~ 10-minutes following SM); however, they do indicate that the stretch reflex is attenuated when SM causes an audible response. This finding provides insight into the mechanisms of SM, and suggests that SM that produces an audible response may mechanistically act to decrease the sensitivity of the muscle spindles and/or the various segmental sites of the Ia reflex pathway.</p
A review of the renal system and diurnal variations of renal activity in livestock
Kidneys are the main organs regulating water-electrolyte homeostasis in the body. They are responsible for maintaining the total volume of water and its distribution in particular water spaces, for electrolyte composition of systemic fluids and also for maintaining acid-base balance. These functions are performed by the plasma filtration process in renal glomeruli and the processes of active absorption and secretion in renal tubules, all adjusted to an 'activity-rest' rhythm. These diurnal changes are influenced by a 24-hour cycle of activity of hormones engaged in the regulation of renal activity. Studies on spontaneous rhythms of renal activity have been carried out mainly on humans and laboratory animals, but few studies have been carried out on livestock animals. Moreover, those results cover only some aspects of renal physiology. This review gives an overview of current knowledge concerning renal function and diurnal variations of some renal activity parameters in livestock, providing greater understanding of general chronobiological processes in mammals. Detailed knowledge of these rhythms is useful for clinical, practical and pharmacological purposes, as well as studies on their physical performance
Cell Birth and Survival following Seasonal Periods of Cell Proliferation in the Chemosensory Epithelia of Red-Backed Salamanders, <i>Plethodon cinereus</i>
Cell death and abnormalities in limb morphogenesis ofPleurodeles waltlii Michah. (urodela, amphibia) after nitrogen mustard treatment
- …
