169 research outputs found
Mixing along the Red Giant Branch in Metal-poor Field Stars
We have determined Li, C, N, O, Na, and Fe abundances, and 12C/13C isotopic
ratios for a sample of 62 field metal-poor stars (plus 43 taken from the
literature). This large sample was used to show that small mass lower-RGB stars
(i.e., fainter than the RGB bump) have abundances of light elements in
agreement with theoretical predictions from classical evolutionary models. A
second, distinct mixing episode occurs just after the RGB bump, reaching
regions of incomplete CNO burning. No O-Na anticorrelation, as observed in
globular cluster stars, is found in field stars. This means that the mixing
episode is not deep enough to reach regions where ON-burning occurs.Comment: 6 pages, 3 encapsulated figures, LateX, uses crckapb.sty; invited
talk, in "The Chemical Evolution of the Milky Way: Stars vs Clusters, Vulcano
(Italy), 20-24 September 1999, F. Matteucci and F. Giovannelli eds, Kluwer,
in pres
The Age of the Galactic Disk
I review different methods devised to derive the age of the Galactic Disk,
namely the Radio-active Decay (RD), the Cool White Dwarf Luminosity Function
(CWDLF), old opne clusters (OOC) and the Color Magnitude Diagram (CMD) of the
stars in the solar vicinity. I argue that the disk is likely to be 8-10 Gyr
old. Since the bulk of globulars has an age around 13 Gyr, the possibility
emerges that the Galaxy experienced a minimum of Star Formation at the end of
the halo/bulge formation. This minimum might reflect the time at which the
Galaxy started to acquire material to form the disk inside-out.Comment: 10 pages, 4 figure, invited review, in "The chemical evolution of the
Milky Way : Stars vs Clusters, Vulcano (Italy), 20-24 September 199
Multiple populations in globular clusters. Lessons learned from the Milky Way globular clusters
Recent progress in studies of globular clusters has shown that they are not
simple stellar populations, being rather made of multiple generations. Evidence
stems both from photometry and spectroscopy. A new paradigm is then arising for
the formation of massive star clusters, which includes several episodes of star
formation. While this provides an explanation for several features of globular
clusters, including the second parameter problem, it also opens new
perspectives about the relation between globular clusters and the halo of our
Galaxy, and by extension of all populations with a high specific frequency of
globular clusters, such as, e.g., giant elliptical galaxies. We review progress
in this area, focusing on the most recent studies. Several points remain to be
properly understood, in particular those concerning the nature of the polluters
producing the abundance pattern in the clusters and the typical timescale, the
range of cluster masses where this phenomenon is active, and the relation
between globular clusters and other satellites of our Galaxy.Comment: In press (The Astronomy and Astrophysics Review
Globular Cluster Distance Determinations
The present status of the distance scale to Galactic globular clusters is
reviewed. Six distance determination techniques which are deemed to be most
reliable are discussed in depth. These different techniques are used to
calibrate the absolute magnitude of the RR Lyrae stars. The various
calibrations fall into three groups. Main sequence fitting using Hipparcos
parallaxes, theoretical HB models and the RR Lyrae in the LMC all favor a
bright calibration, implying a `long' globular cluster distance scale. White
dwarf fitting and the astrometric distances yield a somewhat fainter RR Lyrae
calibration, while the statistical parallax solution yields faint RR Lyrae
stars implying a `short' distance scale to globular clusters. Various secondary
distance indicators discussed all favor the long distance scale. The `long' and
`short' distance scales differ by (0.31+/-0.16) mag. Averaging together all of
the different distance determinations yields Mv(RR) = (0.23+/-0.04)([Fe/H] +
1.6) + (0.56+/-0.12) mag.Comment: Invited review article to appear in: `Post-Hipparcos Cosmic Candles',
A. Heck & F. Caputo (Eds), Kluwer Academic Publ., Dordrecht, in pres
Distances and ages of globular clusters using Hipparcos parallaxes of local subdwarfs
We discuss the impact of Population II and Globular Cluster (GCs) stars on
the derivation of the age of the Universe, and on the study of the formation
and early evolution of galaxies, our own in particular. The long-standing
problem of the actual distance scale to Population II stars and GCs is
addressed, and a variety of different methods commonly used to derive distances
to Population II stars are briefly reviewed. Emphasis is given to the
discussion of distances and ages for GCs derived using Hipparcos parallaxes of
local subdwarfs. Results obtained by different authors are slightly different,
depending on different assumptions about metallicity scale, reddenings, and
corrections for undetected binaries. These and other uncertainties present in
the method are discussed. Finally, we outline progress expected in the near
future.Comment: Invited review article to appear in: `Post-Hipparcos Cosmic Candles',
A. Heck & F. Caputo (Eds), Kluwer Academic Publ., Dordrecht, in press. 22
pages including 3 tables and 2 postscript figures, uses Kluwer's crckapb.sty
LaTeX style file, enclose
The Hubble Constant from Observations of the Brightest Red Giant Stars in a Virgo-Cluster Galaxy
The Virgo and Fornax clusters of galaxies play central roles in determining
the Hubble constant H_0. A powerful and direct way of establishing distances
for elliptical galaxies is to use the luminosities of the brightest red-giant
stars (the TRGB luminosity, at M_I = -4.2). Here we report the direct
observation of the TRGB stars in a dwarf elliptical galaxy in the Virgo
cluster. We find its distance to be 15.7 +- 1.5 Megaparsecs, from which we
estimate a Hubble constant of H_0 = 77 +- 8 km/s/Mpc. Under the assumption of a
low-density Universe with the simplest cosmology, the age of the Universe is no
more than 12-13 billion years.Comment: 12 pages, LaTeX, with 2 postscript figures; in press for Nature, July
199
Rapidly rotating second-generation progenitors for the blue hook stars of {\omega} Cen
Horizontal Branch stars belong to an advanced stage in the evolution of the
oldest stellar galactic population, occurring either as field halo stars or
grouped in globular clusters. The discovery of multiple populations in these
clusters, that were previously believed to have single populations gave rise to
the currently accepted theory that the hottest horizontal branch members (the
blue hook stars, which had late helium-core flash ignition, followed by deep
mixing) are the progeny of a helium-rich "second generation" of stars. It is
not known why such a supposedly rare event (a late flash followed by mixing) is
so common that the blue hook of {\omega} Cen contains \sim 30% of horizontal
branch stars 10 , or why the blue hook luminosity range in this massive cluster
cannot be reproduced by models. Here we report that the presence of helium core
masses up to \sim 0.04 solar masses larger than the core mass resulting from
evolution is required to solve the luminosity range problem. We model this by
taking into account the dispersion in rotation rates achieved by the
progenitors, whose premain sequence accretion disc suffered an early disruption
in the dense environment of the cluster's central regions where
second-generation stars form. Rotation may also account for frequent
late-flash-mixing events in massive globular clusters.Comment: 44 pages, 8 figures, 2 tables in Nature, online june 22, 201
The RR Lyrae Distance Scale
We review seven methods of measuring the absolute magnitude M_V of RR Lyrae
stars in light of the Hipparcos mission and other recent developments. We focus
on identifying possible systematic errors and rank the methods by relative
immunity to such errors. For the three most robust methods, statistical
parallax, trigonometric parallax, and cluster kinematics, we find M_V (at
[Fe/H] = -1.6) of 0.77 +/- 0.13, 0.71 +/- 0.15, 0.67 +/- 0.10. These methods
cluster consistently around 0.71 +/- 0.07. We find that Baade-Wesselink and
theoretical models both yield a broad range of possible values (0.45-0.70 and
0.45-0.65) due to systematic uncertainties in the temperature scale and input
physics. Main-sequence fitting gives a much brighter M_V = 0.45 +/- 0.04 but
this may be due to a difference in the metallicity scales of the cluster giants
and the calibrating subdwarfs. White-dwarf cooling-sequence fitting gives 0.67
+/- 0.13 and is potentially very robust, but at present is too new to be fully
tested for systematics. If the three most robust methods are combined with
Walker's mean measurement for 6 LMC clusters, V_{0,LMC} = 18.98 +/- 0.03 at
[Fe/H] = -1.9, then mu_{LMC} = 18.33 +/- 0.08.Comment: Invited review article to appear in: `Post-Hipparcos Cosmic Candles',
A. Heck & F. Caputo (Eds), Kluwer Academic Publ., Dordrecht, in press. 21
pages including 1 table; uses Kluwer's crckapb.sty LaTeX style file, enclose
The Distances of the Magellanic Clouds
The present status of our knowledge of the distances to the Magellanic Clouds
is evaluated from a post-Hipparcos perspective. After a brief summary of the
effects of structure, reddening, age and metallicity, the primary distance
indicators for the Large Magellanic Cloud are reviewed: The SN 1987A ring,
Cepheids, RR Lyraes, Mira variables, and Eclipsing Binaries. Distances derived
via these methods are weighted and combined to produce final "best" estimates
for the Magellanic Clouds distance moduli.Comment: Invited review article to appear in ``Post Hipparcos Cosmic
Candles'', F. Caputo & A. Heck (Eds.), Kluwer Academic Publ., Dordrecht, in
pres
Does Speaking Two Dialects in Daily Life Affect Executive Functions? An Event-Related Potential Study
Whether using two languages enhances executive functions is a matter of debate. Here, we
take a novel perspective to examine the bilingual advantage hypothesis by comparing bidialect
with mono-dialect speakers’ performance on a non-linguistic task that requires executive
control. Two groups of native Chinese speakers, one speaking only the standard Chinese
Mandarin and the other also speaking the Southern-Min dialect, which differs from the
standard Chinese Mandarin primarily in phonology, performed a classic Flanker task. Behavioural
results showed no difference between the two groups, but event-related potentials
recorded simultaneously revealed a number of differences, including an earlier P2 effect in
the bi-dialect as compared to the mono-dialect group, suggesting that the two groups
engage different underlying neural processes. Despite differences in the early ERP component,
no between-group differences in the magnitude of the Flanker effects, which is an
index of conflict resolution, were observed in the N2 component. Therefore, these findings
suggest that speaking two dialects of one language does not enhance executive functions.
Implications of the current findings for the bilingual advantage hypothesis are discussed
- …
