279 research outputs found
Recommended from our members
A pilot investigation to optimise methods for a future satiety preload study
Preload studies are used to investigate the satiating effects of foods and food ingredients. However, the design of preload studies is complex, with many methodological considerations influencing appetite responses. The aim of this pilot investigation was to determine acceptability, and optimise methods, for a future satiety preload study. Specifically, we investigated the effects of altering (i) energy intake at a standardised breakfast (gender-specific or non-gender specific), and (ii) the duration between mid-morning preload and ad libitum lunch meal, on morning appetite scores and energy intake at lunch. Participants attended a single study visit. Female participants consumed a 214-kcal breakfast (n = 10) or 266-kcal breakfast (n = 10), equivalent to 10% of recommended daily energy intakes for females and males, respectively. Male participants (n = 20) consumed a 266-kcal breakfast. All participants received a 250-ml orange juice preload 2 h after breakfast. The impact of different study timings was evaluated in male participants, with 10 males following one protocol (protocol 1) and 10 males following another (protocol 2). The duration between preload and ad libitum lunch meal was 2 h (protocol 1) or 2.5 h (protocol 2), with the ad libitum lunch meal provided at 12.00 or 13.00, respectively. All female participants followed protocol 2. Visual analogue scale (VAS) questionnaires were used to assess appetite responses and food/drink palatability. Correlation between male and female appetite scores was higher with the provision of a gender-specific breakfast, compared to non-gender-specific breakfast (Pearson correlation of 0.747 and 0.479, respectively). No differences in subjective appetite or ad libitum energy intake were found between protocols 1 and 2. VAS mean ratings of liking, enjoyment, and palatability were all > 66 out of 100 mm for breakfast, preload, and lunch meals. The findings of this pilot study confirm the acceptability of this methodology for future satiety preload studies. Appetite scores increased from preload to ad libitum lunch meal; however, no specific differences were found between protocols. The results highlight the importance of considering energy intake prior to preload provision, with a gender-specific breakfast improving the correlation between male and female appetite score responses to a morning preload
Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.
The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition
AMPK:a nutrient and energy sensor that maintains energy homeostasis
AMP-activated protein kinase (AMPK) is a crucial cellular energy sensor. Once activated by falling energy status, it promotes ATP production by increasing the activity or expression of proteins involved in catabolism while conserving ATP by switching off biosynthetic pathways. AMPK also regulates metabolic energy balance at the whole-body level. For example, it mediates the effects of agents acting on the hypothalamus that promote feeding and entrains circadian rhythms of metabolism and feeding behaviour. Finally, recent studies reveal that AMPK conserves ATP levels through the regulation of processes other than metabolism, such as the cell cycle and neuronal membrane excitability
LKB1 and AMPK and the cancer-metabolism link - ten years after
The identification of a complex containing the tumor suppressor LKB1 as the critical upstream kinase required for the activation of AMP-activated protein kinase (AMPK) by metabolic stress was reported in an article in Journal of Biology in 2003. This finding represented the first clear link between AMPK and cancer. Here we briefly discuss how this discovery came about, and describe some of the insights, especially into the role of AMPK in cancer, that have followed from it. In September 2003, our groups published a joint paper [1] in Journal of Biology (now BMC Biology) that identified the long-sought and elusive upstream kinase acting on AMP-activated protein kinase (AMPK) as a complex containing LKB1, a known tumor suppressor. Similar findings were reported at about the same time by David Carling and Marian Carlson [2] and by Reuben Shaw and Lew Cantley [3]; at the time of writing these three papers have received between them a total of over 2,000 citations. These findings provided a direct link between a protein kinase, AMPK, which at the time was mainly associated with regulation of metabolism, and another protein kinase, LKB1, which was known from genetic studies to be a tumor suppressor. While the idea that cancer is in part a metabolic disorder (first suggested by Warburg in the 1920s [4]) is well recognized today [5], this was not the case in 2003, and our paper perhaps contributed towards its renaissance. The aim of this short review is to recall how we made the original finding, and to discuss some of the directions that these findings have taken the field in the ensuing ten years
Unstaged cancer in the United States: a population-based study
<p>Abstract</p> <p>Background</p> <p>The current study examines unstaged disease for 18 cancer sites in the United States according to the influence of age, sex, race, marital status, incidence, and lethality.</p> <p>Methods</p> <p>Analyses are based on 1,040,381 male and 1,011,355 female incident cancer cases diagnosed during 2000 through 2007. Data were collected by population-based cancer registries in the National Cancer Institute's Surveillance, Epidemiology, and End Results Program.</p> <p>Results</p> <p>The level of unstaged disease was greater in more lethal cancers (e.g., liver, esophagus, and pancreas) compared with less deadly cancers (i.e., colon, urinary bladder, and female breast). Unstaged disease increased with age and is greater among non-married patients. Blacks compared with whites experienced significantly higher levels of unstaged cancers of the stomach, rectum, colon, skin (melanoma), urinary bladder, thyroid, breast, corpus, cervix, and ovaries, but lower levels of unstaged liver, lung and bronchial cancers. Males compared with females experienced significantly lower levels of unstaged cancers of the liver, pancreas, esophagus, and stomach, but significantly higher levels of unstaged lung and bronchial cancer and thyroid cancer. The percent of unstaged cancer significantly decreased over the study period for 15 of the 18 cancer sites.</p> <p>Conclusion</p> <p>Tumor staging directly affects treatment options and survival, so it is recommended that further research focus on why a decrease in unstaged disease did not occur for all of the cancer sites considered from 2000 to 2007, and why there are differential levels of staging between whites and blacks, males and females for several of the cancer sites.</p
Ethnic differences in DNA methyltransferases expression in patients with systemic lupus erythematosus
Systemic lupus erythematous (SLE) is a systemic autoimmune inflammatory disease with both genetic and epigenetic etiologies. Evidence suggests that deregulation of specific genes through epigenetic mechanisms may be a contributing factor to SLE pathology. There is increasing evidence that DNA methyltransferase activity may be involved. This study demonstrated modulation in expression of DNA methyltransferases (DNMTs) according to ethnicity in patients diagnosed with SLE. Furthermore, differential expression in one of the DNMTs was found in a subset of lupus patients on dehydroepiandrosterone (DHEA) therapy. Real-time PCR analyses of DNMT1, DNMT3A and DNMT3B in peripheral blood mononuclear cells from a cohort of African American and European American lupus and non-lupus women were conducted. Also, global DNA methylation was assessed using the MethylFlash.sup.TM methylated quantification colorimetric assay. These findings suggest that epigenetic changes may play a critical role in the manifestations of the disease observed among ethnic groups, particularly African American women who often have a higher incidence of lupus. DHEA therapy effects on DNMT3A expression in AA women warrant further investigation in a larger population
Large-Scale Selective Sweep among Segregation Distorter Chromosomes in African Populations of Drosophila melanogaster
Segregation Distorter (SD) is a selfish, coadapted gene complex on chromosome 2 of Drosophila melanogaster that strongly distorts Mendelian transmission; heterozygous SD/SD+ males sire almost exclusively SD-bearing progeny. Fifty years of genetic, molecular, and theory work have made SD one of the best-characterized meiotic drive systems, but surprisingly the details of its evolutionary origins and population dynamics remain unclear. Earlier analyses suggested that the SD system arose recently in the Mediterranean basin and then spread to a low, stable equilibrium frequency (1–5%) in most natural populations worldwide. In this report, we show, first, that SD chromosomes occur in populations in sub-Saharan Africa, the ancestral range of D. melanogaster, at a similarly low frequency (∼2%), providing evidence for the robustness of its equilibrium frequency but raising doubts about the Mediterranean-origins hypothesis. Second, our genetic analyses reveal two kinds of SD chromosomes in Africa: inversion-free SD chromosomes with little or no transmission advantage; and an African-endemic inversion-bearing SD chromosome, SD-Mal, with a perfect transmission advantage. Third, our population genetic analyses show that SD-Mal chromosomes swept across the African continent very recently, causing linkage disequilibrium and an absence of variability over 39% of the length of the second chromosome. Thus, despite a seemingly stable equilibrium frequency, SD chromosomes continue to evolve, to compete with one another, or evade suppressors in the genome
Metabolomics in Early Alzheimer's Disease: Identification of Altered Plasma Sphingolipidome Using Shotgun Lipidomics
The development of plasma biomarkers could facilitate early detection, risk assessment and therapeutic monitoring in Alzheimer's disease (AD). Alterations in ceramides and sphingomyelins have been postulated to play a role in amyloidogensis and inflammatory stress related neuronal apoptosis; however few studies have conducted a comprehensive analysis of the sphingolipidome in AD plasma using analytical platforms with accuracy, sensitivity and reproducibility.We prospectively analyzed plasma from 26 AD patients (mean MMSE 21) and 26 cognitively normal controls in a non-targeted approach using multi-dimensional mass spectrometry-based shotgun lipidomics to determine the levels of over 800 molecular species of lipids. These data were then correlated with diagnosis, apolipoprotein E4 genotype and cognitive performance. Plasma levels of species of sphingolipids were significantly altered in AD. Of the 33 sphingomyelin species tested, 8 molecular species, particularly those containing long aliphatic chains such as 22 and 24 carbon atoms, were significantly lower (p<0.05) in AD compared to controls. Levels of 2 ceramide species (N16:0 and N21:0) were significantly higher in AD (p<0.05) with a similar, but weaker, trend for 5 other species. Ratios of ceramide to sphingomyelin species containing identical fatty acyl chains differed significantly between AD patients and controls. MMSE scores were correlated with altered mass levels of both N20:2 SM and OH-N25:0 ceramides (p<0.004) though lipid abnormalities were observed in mild and moderate AD. Within AD subjects, there were also genotype specific differences.In this prospective study, we used a sensitive multimodality platform to identify and characterize an essentially uniform but opposite pattern of disruption in sphingomyelin and ceramide mass levels in AD plasma. Given the role of brain sphingolipids in neuronal function, our findings provide new insights into the AD sphingolipidome and the potential use of metabolomic signatures as peripheral biomarkers
Iminosugar-Based Inhibitors of Glucosylceramide Synthase Increase Brain Glycosphingolipids and Survival in a Mouse Model of Sandhoff Disease
The neuropathic glycosphingolipidoses are a subgroup of lysosomal storage disorders for which there are no effective therapies. A potential approach is substrate reduction therapy using inhibitors of glucosylceramide synthase (GCS) to decrease the synthesis of glucosylceramide and related glycosphingolipids that accumulate in the lysosomes. Genz-529468, a blood-brain barrier-permeant iminosugar-based GCS inhibitor, was used to evaluate this concept in a mouse model of Sandhoff disease, which accumulates the glycosphingolipid GM2 in the visceral organs and CNS. As expected, oral administration of the drug inhibited hepatic GM2 accumulation. Paradoxically, in the brain, treatment resulted in a slight increase in GM2 levels and a 20-fold increase in glucosylceramide levels. The increase in brain glucosylceramide levels might be due to concurrent inhibition of the non-lysosomal glucosylceramidase, Gba2. Similar results were observed with NB-DNJ, another iminosugar-based GCS inhibitor. Despite these unanticipated increases in glycosphingolipids in the CNS, treatment nevertheless delayed the loss of motor function and coordination and extended the lifespan of the Sandhoff mice. These results suggest that the CNS benefits observed in the Sandhoff mice might not necessarily be due to substrate reduction therapy but rather to off-target effects
- …
