111 research outputs found
Forest biodiversity, ecosystem functioning and the provision of ecosystem services
Forests are critical habitats for biodiversity and they are also essential for the provision of a wide range of ecosystem services that are important to human well-being. There is increasing evidence that biodiversity contributes to forest ecosystem functioning and the provision of ecosystem services. Here we provide a review of forest ecosystem services including biomass production, habitat provisioning services, pollination, seed dispersal, resistance to wind storms, fire regulation and mitigation, pest regulation of native and invading insects, carbon sequestration, and cultural ecosystem services, in relation to forest type, structure and diversity. We also consider relationships between forest biodiversity and multifunctionality, and trade-offs among ecosystem services. We compare the concepts of ecosystem processes, functions and services to clarify their definitions. Our review of published studies indicates a lack of empirical studies that establish quantitative and causal relationships between forest biodiversity and many important ecosystem services. The literature is highly skewed; studies on provisioning of nutrition and energy, and on cultural services, delivered by mixed-species forests are under-represented. Planted forests offer ample opportunity for optimising their composition and diversity because replanting after harvesting is a recurring process. Planting mixed-species forests should be given more consideration as they are likely to provide a wider range of ecosystem services within the forest and for adjacent land uses. This review also serves as the introduction to this special issue of Biodiversity and Conservation on various aspects of forest biodiversity and ecosystem services
U–Pb zircon dating of post-obduction volcanic-arc granitoids and a granulite-facies xenolith from New Caledonia. Inference on Southwest Pacific geodynamic models
The number of tree species on Earth
One of the most fundamental questions in ecology is how many species inhabit the Earth. However, due to massive logistical and financial challenges and taxonomic difficulties connected to the species concept definition, the global numbers of species, including those of important and well-studied life forms such as trees, still remain largely unknown. Here, based on global ground-sourced data, we estimate the total tree species richness at global, continental, and biome levels. Our results indicate that there are ∼73,000 tree species globally, among which ∼9,000 tree species are yet to be discovered. Roughly 40% of undiscovered tree species are in South America. Moreover, almost one-third of all tree species to be discovered may be rare, with very low populations and limited spatial distribution (likely in remote tropical lowlands and mountains). These findings highlight the vulnerability of global forest biodiversity to anthropogenic changes in land use and climate, which disproportionately threaten rare species and thus, global tree richness
Climatic and topographic changes since the Miocene influenced the diversification and biogeography of the tent tortoise (Psammobates tentorius) species complex in Southern Africa
Background: Climatic and topographic changes function as key drivers in shaping genetic structure and cladogenic
radiation in many organisms. Southern Africa has an exceptionally diverse tortoise fauna, harbouring one-third of
the world’s tortoise genera. The distribution of Psammobates tentorius (Kuhl, 1820) covers two of the 25 biodiversity
hotspots in the world, the Succulent Karoo and Cape Floristic Region. The highly diverged P. tentorius represents an
excellent model species for exploring biogeographic and radiation patterns of reptiles in Southern Africa.
Results: We investigated genetic structure and radiation patterns against temporal and spatial dimensions since the
Miocene in the Psammobates tentorius species complex, using multiple types of DNA markers and niche modelling
analyses. Cladogenesis in P. tentorius started in the late Miocene (11.63–5.33 Ma) when populations dispersed from
north to south to form two geographically isolated groups. The northern group diverged into a clade north of the
Orange River (OR), followed by the splitting of the group south of the OR into a western and an interior clade. The
latter divergence corresponded to the intensifcation of the cold Benguela current, which caused western aridifcation
and rainfall seasonality. In the south, tectonic uplift and subsequent exhumation, together with climatic fuctuations
seemed responsible for radiations among the four southern clades since the late Miocene. We found that each clade
occurred in a habitat shaped by diferent climatic parameters, and that the niches difered substantially among the
clades of the northern group but were similar among clades of the southern group.
Conclusion: Climatic shifts, and biome and geographic changes were possibly the three major driving forces shaping cladogenesis and genetic structure in Southern African tortoise species. Our results revealed that the cladogenesis
of the P. tentorius species complex was probably shaped by environmental cooling, biome shifts and topographic
uplift in Southern Africa since the late Miocene. The Last Glacial Maximum (LGM) may have impacted the distribution
of P. tentorius substantially. We found the taxonomic diversify of the P. tentorius species complex to be highest in the
Greater Cape Floristic Region. All seven clades discovered warrant conservation attention, particularly Ptt-B–Ptr, Ptt-A
and Pv-
Evidence-based Kernels: Fundamental Units of Behavioral Influence
This paper describes evidence-based kernels, fundamental units of behavioral influence that appear to underlie effective prevention and treatment for children, adults, and families. A kernel is a behavior–influence procedure shown through experimental analysis to affect a specific behavior and that is indivisible in the sense that removing any of its components would render it inert. Existing evidence shows that a variety of kernels can influence behavior in context, and some evidence suggests that frequent use or sufficient use of some kernels may produce longer lasting behavioral shifts. The analysis of kernels could contribute to an empirically based theory of behavioral influence, augment existing prevention or treatment efforts, facilitate the dissemination of effective prevention and treatment practices, clarify the active ingredients in existing interventions, and contribute to efficiently developing interventions that are more effective. Kernels involve one or more of the following mechanisms of behavior influence: reinforcement, altering antecedents, changing verbal relational responding, or changing physiological states directly. The paper describes 52 of these kernels, and details practical, theoretical, and research implications, including calling for a national database of kernels that influence human behavior
A new improved protocol for in vitro intratubular dentinal bacterial contamination for antimicrobial endodontic tests: standardization and validation by confocal laser scanning microscopy
Objectives To compare three methods of intratubular contamination that simulate endodontic infections using confocal laser scanning microscopy (CLSM). Material and Methods Two pre-existing models of dentinal contamination were used to induce intratubular infection (groups A and B). These methods were modified in an attempt to improve the model (group C). Among the modifications it may be included: specimen contamination for five days, ultrasonic bath with BHI broth after specimen sterilization, use of E. faecalis during the exponential growth phase, greater concentration of inoculum, and two cycles of centrifugation on alternate days with changes of culture media. All specimens were longitudinally sectioned and stained with of LIVE/DEAD® for 20 min. Specimens were assessed using CLSM, which provided images of the depth of viable bacterial proliferation inside the dentinal tubules. Additionally, three examiners used scores to classify the CLSM images according to the following parameters: homogeneity, density, and depth of the bacterial contamination inside the dentinal tubules. Kruskal-Wallis and Dunn’s tests were used to evaluate the live and dead cells rates, and the scores obtained. Results The contamination scores revealed higher contamination levels in group C when compared with groups A and B (p0.05). The volume of live cells in group C was higher than in groups A and B (p<0.05). Conclusion The new protocol for intratubular infection resulted in high and uniform patterns of bacterial contamination and higher cell viability in all specimens when compared with the current methods
Recommended from our members
Native diversity buffers against severity of non-native tree invasions.
This is the final version. Available from Nature Research via the DOI in this record. Data availability:
Data used in this study can be found in cited references for the Global Naturalized Alien Flora (GloNAF) database6 (non-native status), the KEW Plants of the World database5 (native ranges) and the Global Environmental Composite63,77 (environmental data layers). Plant trait data were extracted from Maynard et al.78. Data from the Global Forest Biodiversity Initiative (GFBI) database57 are not available due to data privacy and sharing restrictions, but can be obtained upon request via Science-I (https://science-i.org/) or GFBI (gfbinitiative.org) and an approval from data contributors.Code availability
All code used to complete analyses for the manuscript is available at the following link: https://github.com/thomaslauber/Global-Tree-Invasion. Data analyses were conducted and were visualizations generated in R (v. 4.2.2), Python (v. 3.9.7), Google Earth Engine (earthengine-api 0.1.306), QGIS-LTR (v. 3.16.7) and the ETH Zurich Euler cluster.Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5-7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions.Swiss National Science FoundationSwiss National Science FoundationBernina FoundationDOB Ecolog
Evenness mediates the global relationship between forest productivity and richness
1. Biodiversity is an important component of natural ecosystems, with higher species richness often correlating with an increase in ecosystem productivity. Yet, this relationship varies substantially across environments, typically becoming less pronounced at high levels of species richness. However, species richness alone cannot reflect all important properties of a community, including community evenness, which may mediate the relationship between biodiversity and productivity. If the evenness of a community correlates negatively with richness across forests globally, then a greater number of species may not always increase overall diversity and productivity of the system. Theoretical work and local empirical studies have shown that the effect of evenness on ecosystem functioning may be especially strong at high richness levels, yet the consistency of this remains untested at a global scale.
2. Here, we used a dataset of forests from across the globe, which includes composition, biomass accumulation and net primary productivity, to explore whether productivity correlates with community evenness and richness in a way that evenness appears to buffer the effect of richness. Specifically, we evaluated whether low levels of evenness in speciose communities correlate with the attenuation of the richness–productivity relationship.
3. We found that tree species richness and evenness are negatively correlated across forests globally, with highly speciose forests typically comprising a few dominant and many rare species. Furthermore, we found that the correlation between diversity and productivity changes with evenness: at low richness, uneven communities are more productive, while at high richness, even communities are more productive.
4. Synthesis. Collectively, these results demonstrate that evenness is an integral component of the relationship between biodiversity and productivity, and that the attenuating effect of richness on forest productivity might be partly explained by low evenness in speciose communities. Productivity generally increases with species richness, until reduced evenness limits the overall increases in community diversity. Our research suggests that evenness is a fundamental component of biodiversity–ecosystem function relationships, and is of critical importance for guiding conservation and sustainable ecosystem management decisions
- …
