3,625 research outputs found
The Hardness of Embedding Grids and Walls
The dichotomy conjecture for the parameterized embedding problem states that
the problem of deciding whether a given graph from some class of
"pattern graphs" can be embedded into a given graph (that is, is isomorphic
to a subgraph of ) is fixed-parameter tractable if is a class of graphs
of bounded tree width and -complete otherwise.
Towards this conjecture, we prove that the embedding problem is
-complete if is the class of all grids or the class of all walls
On The Power of Tree Projections: Structural Tractability of Enumerating CSP Solutions
The problem of deciding whether CSP instances admit solutions has been deeply
studied in the literature, and several structural tractability results have
been derived so far. However, constraint satisfaction comes in practice as a
computation problem where the focus is either on finding one solution, or on
enumerating all solutions, possibly projected to some given set of output
variables. The paper investigates the structural tractability of the problem of
enumerating (possibly projected) solutions, where tractability means here
computable with polynomial delay (WPD), since in general exponentially many
solutions may be computed. A general framework based on the notion of tree
projection of hypergraphs is considered, which generalizes all known
decomposition methods. Tractability results have been obtained both for classes
of structures where output variables are part of their specification, and for
classes of structures where computability WPD must be ensured for any possible
set of output variables. These results are shown to be tight, by exhibiting
dichotomies for classes of structures having bounded arity and where the tree
decomposition method is considered
Improved FPT algorithms for weighted independent set in bull-free graphs
Very recently, Thomass\'e, Trotignon and Vuskovic [WG 2014] have given an FPT
algorithm for Weighted Independent Set in bull-free graphs parameterized by the
weight of the solution, running in time . In this article
we improve this running time to . As a byproduct, we also
improve the previous Turing-kernel for this problem from to .
Furthermore, for the subclass of bull-free graphs without holes of length at
most for , we speed up the running time to . As grows, this running time is
asymptotically tight in terms of , since we prove that for each integer , Weighted Independent Set cannot be solved in time in the class of -free graphs unless the
ETH fails.Comment: 15 page
The incidence and clinical burden of respiratory syncytial virus disease identified through hospital outpatient presentations in Kenyan children
There is little information that describe the burden of respiratory syncytial virus (RSV) associated disease in the tropical African outpatient setting.
Methods
We studied a systematic sample of children aged <5 years presenting to a rural district hospital in Kenya with acute respiratory infection (ARI) between May 2002 and April 2004. We collected clinical data and screened nasal wash samples for RSV antigen by immunofluorescence. We used a linked demographic surveillance system to estimate disease incidence.
Results
Among 2143 children tested, 166 (8%) were RSV positive (6% among children with upper respiratory tract infection and 12% among children with lower respiratory tract infection (LRTI). RSV was more likely in LRTI than URTI (p<0.001). 51% of RSV cases were aged 1 year or over. RSV cases represented 3.4% of hospital outpatient presentations. Relative to RSV negative cases, RSV positive cases were more likely to have crackles (RR = 1.63; 95% CI 1.34–1.97), nasal flaring (RR = 2.66; 95% CI 1.40–5.04), in-drawing (RR = 2.24; 95% CI 1.47–3.40), fast breathing for age (RR = 1.34; 95% CI 1.03–1.75) and fever (RR = 1.54; 95% CI 1.33–1.80). The estimated incidence of RSV-ARI and RSV-LRTI, per 100,000 child years, among those aged <5 years was 767 and 283, respectively.
Conclusion
The burden of childhood RSV-associated URTI and LRTI presenting to outpatients in this setting is considerable. The clinical features of cases associated with an RSV infection were more severe than cases without an RSV diagnosis
Performance of Small Cluster Surveys and the Clustered LQAS Design to estimate Local-level Vaccination Coverage in Mali
<p>Abstract</p> <p>Background</p> <p>Estimation of vaccination coverage at the local level is essential to identify communities that may require additional support. Cluster surveys can be used in resource-poor settings, when population figures are inaccurate. To be feasible, cluster samples need to be small, without losing robustness of results. The clustered LQAS (CLQAS) approach has been proposed as an alternative, as smaller sample sizes are required.</p> <p>Methods</p> <p>We explored (i) the efficiency of cluster surveys of decreasing sample size through bootstrapping analysis and (ii) the performance of CLQAS under three alternative sampling plans to classify local VC, using data from a survey carried out in Mali after mass vaccination against meningococcal meningitis group A.</p> <p>Results</p> <p>VC estimates provided by a 10 × 15 cluster survey design were reasonably robust. We used them to classify health areas in three categories and guide mop-up activities: i) health areas not requiring supplemental activities; ii) health areas requiring additional vaccination; iii) health areas requiring further evaluation. As sample size decreased (from 10 × 15 to 10 × 3), standard error of VC and ICC estimates were increasingly unstable. Results of CLQAS simulations were not accurate for most health areas, with an overall risk of misclassification greater than 0.25 in one health area out of three. It was greater than 0.50 in one health area out of two under two of the three sampling plans.</p> <p>Conclusions</p> <p>Small sample cluster surveys (10 × 15) are acceptably robust for classification of VC at local level. We do not recommend the CLQAS method as currently formulated for evaluating vaccination programmes.</p
Parametrised Complexity of Model Checking and Satisfiability in Propositional Dependence Logic
In this paper, we initiate a systematic study of the parametrised complexity
in the field of Dependence Logics which finds its origin in the Dependence
Logic of V\"a\"an\"anen from 2007. We study a propositional variant of this
logic (PDL) and investigate a variety of parametrisations with respect to the
central decision problems. The model checking problem (MC) of PDL is
NP-complete. The subject of this research is to identify a list of
parametrisations (formula-size, treewidth, treedepth, team-size, number of
variables) under which MC becomes fixed-parameter tractable. Furthermore, we
show that the number of disjunctions or the arity of dependence atoms
(dep-arity) as a parameter both yield a paraNP-completeness result. Then, we
consider the satisfiability problem (SAT) showing a different picture: under
team-size, or dep-arity SAT is paraNP-complete whereas under all other
mentioned parameters the problem is in FPT. Finally, we introduce a variant of
the satisfiability problem, asking for teams of a given size, and show for this
problem an almost complete picture.Comment: Update includes refined result
A New Era in the Quest for Dark Matter
There is a growing sense of `crisis' in the dark matter community, due to the
absence of evidence for the most popular candidates such as weakly interacting
massive particles, axions, and sterile neutrinos, despite the enormous effort
that has gone into searching for these particles. Here, we discuss what we have
learned about the nature of dark matter from past experiments, and the
implications for planned dark matter searches in the next decade. We argue that
diversifying the experimental effort, incorporating astronomical surveys and
gravitational wave observations, is our best hope to make progress on the dark
matter problem.Comment: Published in Nature, online on 04 Oct 2018. 13 pages, 1 figur
Fixed-Parameter Tractable Distances to Sparse Graph Classes
We show that for various classes of sparse graphs, and several measures of distance to such classes (such as edit distance and elimination distance), the problem of determining the distance of a given graph to is fixed-parameter tractable. The results are based on two general techniques. The first of these, building on recent work of Grohe et al. establishes that any class of graphs that is slicewise nowhere dense and slicewise first-order definable is FPT. The second shows that determining the elimination distance of a graph to a minor-closed class is FPT. We demonstrate that several prior results (of Golovach, Moser and Thilikos and Mathieson) on the fixed-parameter tractability of distance measures are special cases of our first method
Different atmospheric moisture divergence responses to extreme and moderate El Niños
On seasonal and inter-annual time scales, vertically integrated moisture divergence provides a useful measure of the tropical atmospheric hydrological cycle. It reflects the combined dynamical and thermodynamical effects, and is not subject to the limitations that afflict observations of evaporation minus precipitation. An empirical orthogonal function (EOF) analysis of the tropical Pacific moisture divergence fields calculated from the ERA-Interim reanalysis reveals the dominant effects of the El Niño-Southern Oscillation (ENSO) on inter-annual time scales. Two EOFs are necessary to capture the ENSO signature, and regression relationships between their Principal Components and indices of equatorial Pacific sea surface temperature (SST) demonstrate that the transition from strong La Niña through to extreme El Niño events is not a linear one. The largest deviation from linearity is for the strongest El Niños, and we interpret that this arises at least partly because the EOF analysis cannot easily separate different patterns of responses that are not orthogonal to each other. To overcome the orthogonality constraints, a self-organizing map (SOM) analysis of the same moisture divergence fields was performed. The SOM analysis captures the range of responses to ENSO, including the distinction between the moderate and strong El Niños identified by the EOF analysis. The work demonstrates the potential for the application of SOM to large scale climatic analysis, by virtue of its easier interpretation, relaxation of orthogonality constraints and its versatility for serving as an alternative classification method. Both the EOF and SOM analyses suggest a classification of “moderate” and “extreme” El Niños by their differences in the magnitudes of the hydrological cycle responses, spatial patterns and evolutionary paths. Classification from the moisture divergence point of view shows consistency with results based on other physical variables such as SST
Author response image 1. Re-plotting of panels from figures 2A, 2D, 3D and 3E from the main manuscript, using two-tailed rather than one-tailed tests on signal build-up rates (significance indicated by black running markers).
The ability to revise one's certainty or confidence in a preceding choice is a critical feature of adaptive decision-making but the neural mechanisms underpinning this metacognitive process have yet to be characterized. In the present study, we demonstrate that the same build-to-threshold decision variable signal that triggers an initial choice continues to evolve after commitment, and determines the timing and accuracy of self-initiated error detection reports by selectively representing accumulated evidence that the preceding choice was incorrect. We also show that a peri-choice signal generated in medial frontal cortex provides a source of input to this post-decision accumulation process, indicating that metacognitive judgments are not solely based on the accumulation of feedforward sensory evidence. These findings impart novel insights into the generative mechanisms of metacognition
- …
