4,342 research outputs found

    High girth column-weight-two LDPC codes based on distance graphs

    Get PDF
    Copyright © 2007 G. Malema and M. Liebelt. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.LDPC codes of column weight of two are constructed from minimal distance graphs or cages. Distance graphs are used to represent LDPC code matrices such that graph vertices that represent rows and edges are columns. The conversion of a distance graph into matrix form produces an adjacency matrix with column weight of two and girth double that of the graph. The number of 1's in each row (row weight) is equal to the degree of the corresponding vertex. By constructing graphs with different vertex degrees, we can vary the rate of corresponding LDPC code matrices. Cage graphs are used as examples of distance graphs to design codes with different girths and rates. Performance of obtained codes depends on girth and structure of the corresponding distance graphs.Gabofetswe Malema and Michael Liebel

    On the classical equivalence of monodromy matrices in squashed sigma model

    Get PDF
    We proceed to study the hybrid integrable structure in two-dimensional non-linear sigma models with target space three-dimensional squashed spheres. A quantum affine algebra and a pair of Yangian algebras are realized in the sigma models and, according to them, there are two descriptions to describe the classical dynamics 1) the trigonometric description and 2) the rational description, respectively. For every description, a Lax pair is constructed and the associated monodromy matrix is also constructed. In this paper we show the gauge-equivalence of the monodromy matrices in the trigonometric and rational description under a certain relation between spectral parameters and the rescalings of sl(2) generators.Comment: 32pages, 3figures, references added, introduction and discussion sections revise

    MRI of the lung (3/3)-current applications and future perspectives

    Get PDF
    BACKGROUND: MRI of the lung is recommended in a number of clinical indications. Having a non-radiation alternative is particularly attractive in children and young subjects, or pregnant women. METHODS: Provided there is sufficient expertise, magnetic resonance imaging (MRI) may be considered as the preferential modality in specific clinical conditions such as cystic fibrosis and acute pulmonary embolism, since additional functional information on respiratory mechanics and regional lung perfusion is provided. In other cases, such as tumours and pneumonia in children, lung MRI may be considered an alternative or adjunct to other modalities with at least similar diagnostic value. RESULTS: In interstitial lung disease, the clinical utility of MRI remains to be proven, but it could provide additional information that will be beneficial in research, or at some stage in clinical practice. Customised protocols for chest imaging combine fast breath-hold acquisitions from a "buffet" of sequences. Having introduced details of imaging protocols in previous articles, the aim of this manuscript is to discuss the advantages and limitations of lung MRI in current clinical practice. CONCLUSION: New developments and future perspectives such as motion-compensated imaging with self-navigated sequences or fast Fourier decomposition MRI for non-contrast enhanced ventilation- and perfusion-weighted imaging of the lung are discussed. Main Messages • MRI evolves as a third lung imaging modality, combining morphological and functional information. • It may be considered first choice in cystic fibrosis and pulmonary embolism of young and pregnant patients. • In other cases (tumours, pneumonia in children), it is an alternative or adjunct to X-ray and CT. • In interstitial lung disease, it serves for research, but the clinical value remains to be proven. • New users are advised to make themselves familiar with the particular advantages and limitations

    Altered Neurocircuitry in the Dopamine Transporter Knockout Mouse Brain

    Get PDF
    The plasma membrane transporters for the monoamine neurotransmitters dopamine, serotonin, and norepinephrine modulate the dynamics of these monoamine neurotransmitters. Thus, activity of these transporters has significant consequences for monoamine activity throughout the brain and for a number of neurological and psychiatric disorders. Gene knockout (KO) mice that reduce or eliminate expression of each of these monoamine transporters have provided a wealth of new information about the function of these proteins at molecular, physiological and behavioral levels. In the present work we use the unique properties of magnetic resonance imaging (MRI) to probe the effects of altered dopaminergic dynamics on meso-scale neuronal circuitry and overall brain morphology, since changes at these levels of organization might help to account for some of the extensive pharmacological and behavioral differences observed in dopamine transporter (DAT) KO mice. Despite the smaller size of these animals, voxel-wise statistical comparison of high resolution structural MR images indicated little morphological change as a consequence of DAT KO. Likewise, proton magnetic resonance spectra recorded in the striatum indicated no significant changes in detectable metabolite concentrations between DAT KO and wild-type (WT) mice. In contrast, alterations in the circuitry from the prefrontal cortex to the mesocortical limbic system, an important brain component intimately tied to function of mesolimbic/mesocortical dopamine reward pathways, were revealed by manganese-enhanced MRI (MEMRI). Analysis of co-registered MEMRI images taken over the 26 hours after introduction of Mn^(2+) into the prefrontal cortex indicated that DAT KO mice have a truncated Mn^(2+) distribution within this circuitry with little accumulation beyond the thalamus or contralateral to the injection site. By contrast, WT littermates exhibit Mn^(2+) transport into more posterior midbrain nuclei and contralateral mesolimbic structures at 26 hr post-injection. Thus, DAT KO mice appear, at this level of anatomic resolution, to have preserved cortico-striatal-thalamic connectivity but diminished robustness of reward-modulating circuitry distal to the thalamus. This is in contradistinction to the state of this circuitry in serotonin transporter KO mice where we observed more robust connectivity in more posterior brain regions using methods identical to those employed here

    WAP four-disulfide core domain protein 2 gene(WFDC2) is a target of estrogen in ovarian cancer cells

    Get PDF
    BACKGROUND: WAP four-disulfide core domain protein 2 (WFDC2) shows a tumor-restricted upregulated pattern of expression in ovarian cancer. METHODS: We investigated the role of estradiol (E2) on cell growth in estrogen-sensitive or estrogen-insensitive ovarian cancer cell lines. Real-time (RT)-PCR and western blotting were used to examine the expression of WFDC2 at RNA and protein levels. Growth traits of cells transfected with WFDC2-shRNA or blank control were assessed using MMT arrays. Cell apoptosis was analyzed using annexin V-FITC/PI and flow cytometry. Estrogen receptor expression was evaluated using RT-PCR and flow cytometry. Apoptosis-related proteins induced by E2 directly and indirectly were determined using an antibody array comparing cells transfected with WFDC2- shRNA or a blank control. RESULTS: High-dose (625 ng/ml) E2 increased the expression of WFDC2 in HO8910 cells at both the mRNA and protein levels. However, E2 had no effect on WFDC2 expression in estrogen-insensitive SKOV3 cells. Of interest, knockdown of WFDC2 enabled a considerable estrogen response in SKOV3 cells in terms of proliferation, similar to estrogen-responsive HO8910 cells. This transformation of SKOV3 cells into an estrogen-responsive phenotype was accompanied by upregulation of estrogen receptor beta (ERß) and an effect on cell apoptosis under E2 treatment by regulating genes related to cell proliferation and apoptosis. CONCLUSIONS: We postulate that increased WFDC2 expression plays an important role in altering the estrogen pathway in ovarian cancer, and the identification of WFDC2 as a new player in endocrine-related cancer encourages further studies on the significance of this gene in cancer development and therapy. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13048-015-0210-y) contains supplementary material, which is available to authorized users

    Statistically validated networks in bipartite complex systems

    Get PDF
    Many complex systems present an intrinsic bipartite nature and are often described and modeled in terms of networks [1-5]. Examples include movies and actors [1, 2, 4], authors and scientific papers [6-9], email accounts and emails [10], plants and animals that pollinate them [11, 12]. Bipartite networks are often very heterogeneous in the number of relationships that the elements of one set establish with the elements of the other set. When one constructs a projected network with nodes from only one set, the system heterogeneity makes it very difficult to identify preferential links between the elements. Here we introduce an unsupervised method to statistically validate each link of the projected network against a null hypothesis taking into account the heterogeneity of the system. We apply our method to three different systems, namely the set of clusters of orthologous genes (COG) in completely sequenced genomes [13, 14], a set of daily returns of 500 US financial stocks, and the set of world movies of the IMDb database [15]. In all these systems, both different in size and level of heterogeneity, we find that our method is able to detect network structures which are informative about the system and are not simply expression of its heterogeneity. Specifically, our method (i) identifies the preferential relationships between the elements, (ii) naturally highlights the clustered structure of investigated systems, and (iii) allows to classify links according to the type of statistically validated relationships between the connected nodes.Comment: Main text: 13 pages, 3 figures, and 1 Table. Supplementary information: 15 pages, 3 figures, and 2 Table

    Influence of chromophores on quarternary structure of phycobiliproteins from the cyanobacterium, Mastigocladus laminosus

    Get PDF
    Chromophores of C-phycocyanin and phycoerythrο-cyanin have been chemically modified by reduction to rubins , bleaching , photoisomerization , or perturbation with bulky substituents. Pigments containing modified chromophores, or hybrids containing modified and unmodified chromophores in individual protomers have been prepared. All modifications inhibit the association of the (aß)-protomers of these pigments to higher aggregates. The results demonstrate a pronounced effect of the state of the chromophores on biliprotein quaternary structure. It may be important in phycobi1isome assembly , and also in the dual function of biliproteins as (i) antenna pigments for photosynthesis and (ii) reaction centers for photomor-phogenesis

    Bio-nanotechnology application in wastewater treatment

    Get PDF
    The nanoparticles have received high interest in the field of medicine and water purification, however, the nanomaterials produced by chemical and physical methods are considered hazardous, expensive, and leave behind harmful substances to the environment. This chapter aimed to focus on green-synthesized nanoparticles and their medical applications. Moreover, the chapter highlighted the applicability of the metallic nanoparticles (MNPs) in the inactivation of microbial cells due to their high surface and small particle size. Modifying nanomaterials produced by green-methods is safe, inexpensive, and easy. Therefore, the control and modification of nanoparticles and their properties were also discussed

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition
    corecore