21,055 research outputs found
Lovelock gravity from entropic force
In this paper, we first generalize the formulation of entropic gravity to
(n+1)-dimensional spacetime. Then, we propose an entropic origin for
Gauss-Bonnet gravity and more general Lovelock gravity in arbitrary dimensions.
As a result, we are able to derive Newton's law of gravitation as well as the
corresponding Friedmann equations in these gravity theories. This procedure
naturally leads to a derivation of the higher dimensional gravitational
coupling constant of Friedmann/Einstein equation which is in complete agreement
with the results obtained by comparing the weak field limit of Einstein
equation with Poisson equation in higher dimensions. Our study shows that the
approach presented here is powerful enough to derive the gravitational field
equations in any gravity theory. PACS: 04.20.Cv, 04.50.-h, 04.70.Dy.Comment: 10 pages, new versio
Generic master equations for quasi-normal frequencies
Generic master equations governing the highly-damped quasi-normal frequencies
[QNFs] of one-horizon, two-horizon, and even three-horizon spacetimes can be
obtained through either semi-analytic or monodromy techniques. While many
technical details differ, both between the semi-analytic and monodromy
approaches, and quite often among various authors seeking to apply the
monodromy technique, there is nevertheless widespread agreement regarding the
the general form of the QNF master equations. Within this class of generic
master equations we can establish some rather general results, relating the
existence of "families" of QNFs of the form omega_{a,n} = (offset)_a + i n
(gap) to the question of whether or not certain ratios of parameters are
rational or irrational.Comment: 23 pages; V2: Minor additions, typos fixed. Matches published versio
Dating the emergence of Influenza A (H5N1) Virus
Since the first detection of highly pathogenic avian influenza (H5N1) virus in geese in Guangdong, China, H5N1 viruses have transmitted to poultry throughout southern China. In late 2003 the first transmission wave spread the virus to multiple Southeast Asian countries. In May 2005, the second transmission wave of H5N1 virus westwards to Europe and Africa was initiated following a major outbreak in migratory birds at Qinghai Lake, China, while a third transmission wave has been initiated since mid-2005. Those viruses are now endemic in poultry populations in some affected regions and cause repeated outbreaks in poultry and increasing human infection cases, creating persistent pandemic concerns. Genetic data from systematic surveillance of H5N1 for the past seven years in marketing poultry, along with sequence data from outbreaks throughout the region, provide us with a unique opportunity to estimate the most recent common ancestor (MRCA) and postulate the dates of introduction of H5N1 variants into different affected countries. In this study, we estimated the time of emergence of those three transmission waves …postprin
In situ evidence for the structure of the magnetic null in a 3D reconnection event in the Earth's magnetotail
Magnetic reconnection is one of the most important processes in
astrophysical, space and laboratory plasmas. Identifying the structure around
the point at which the magnetic field lines break and subsequently reform,
known as the magnetic null point, is crucial to improving our understanding
reconnection. But owing to the inherently three-dimensional nature of this
process, magnetic nulls are only detectable through measurements obtained
simultaneously from at least four points in space. Using data collected by the
four spacecraft of the Cluster constellation as they traversed a diffusion
region in the Earth's magnetotail on 15 September, 2001, we report here the
first in situ evidence for the structure of an isolated magnetic null. The
results indicate that it has a positive-spiral structure whose spatial extent
is of the same order as the local ion inertial length scale, suggesting that
the Hall effect could play an important role in 3D reconnection dynamics.Comment: 14 pages, 4 figure
The roles of apex dipoles and field penetration in the physics of charged, field emitting, single-walled carbon nanotubes
A 1 μm long, field emitting, (5, 5) single-walled carbon nanotube (SWCNT) closed with a fullerene cap, and a similar open nanotube with hydrogen-atom termination, have been simulated using the modified neglect of diatomic overlap quantum-mechanical method. Both contain about 80 000 atoms. It is found that field penetration and band bending, and various forms of chemically and electrically induced apex dipole play roles. Field penetration may help explain electroluminescence associated with field emitting CNTs. Charge-density oscillations, induced by the hydrogen adsorption, are also found. Many of the effects can be related to known effects that occur with metallic or semiconductor field emitters; this helps both to explain the effects and to unify our knowledge about FE emitters. However, it is currently unclear how best to treat correlation-and-exchange effects when defining the CNT emission barrier. A new form of definition for the field enhancement factor (FEF) is used. Predicted FEF values for these SWCNTs are significantly less than values predicted by simple classical formulae. The FEF for the closed SWCNT decreases with applied field; the FEF for the H-terminated open SWCNT is less than the FEF for the closed SWCNT but increases with applied field. Physical explanations for this behavior are proposed but the concept of FEF is clearly problematical for CNTs. Curved Fowler-Nordheim plots are predicted. Overall, the predicted field emission performance of the H-terminated open SWCNT is slightly better than that of the closed SWCNT, essentially because a C-H dipole is formed that reduces the height of the tunneling barrier. In general, the physics of a charged SWCNT seems much more complex than hitherto realized. © 2008 American Institute of Physics.published_or_final_versio
Quantum magnetism and criticality
Magnetic insulators have proved to be fertile ground for studying new types
of quantum many body states, and I survey recent experimental and theoretical
examples. The insights and methods transfer also to novel superconducting and
metallic states. Of particular interest are critical quantum states, sometimes
found at quantum phase transitions, which have gapless excitations with no
particle- or wave-like interpretation, and control a significant portion of the
finite temperature phase diagram. Remarkably, their theory is connected to
holographic descriptions of Hawking radiation from black holes.Comment: 39 pages, 10 figures, review article for non-specialists; (v2) added
clarifications and references; (v3) minor corrections; (v4) added footnote on
hydrodynamic long-time tail
Different atmospheric moisture divergence responses to extreme and moderate El Niños
On seasonal and inter-annual time scales, vertically integrated moisture divergence provides a useful measure of the tropical atmospheric hydrological cycle. It reflects the combined dynamical and thermodynamical effects, and is not subject to the limitations that afflict observations of evaporation minus precipitation. An empirical orthogonal function (EOF) analysis of the tropical Pacific moisture divergence fields calculated from the ERA-Interim reanalysis reveals the dominant effects of the El Niño-Southern Oscillation (ENSO) on inter-annual time scales. Two EOFs are necessary to capture the ENSO signature, and regression relationships between their Principal Components and indices of equatorial Pacific sea surface temperature (SST) demonstrate that the transition from strong La Niña through to extreme El Niño events is not a linear one. The largest deviation from linearity is for the strongest El Niños, and we interpret that this arises at least partly because the EOF analysis cannot easily separate different patterns of responses that are not orthogonal to each other. To overcome the orthogonality constraints, a self-organizing map (SOM) analysis of the same moisture divergence fields was performed. The SOM analysis captures the range of responses to ENSO, including the distinction between the moderate and strong El Niños identified by the EOF analysis. The work demonstrates the potential for the application of SOM to large scale climatic analysis, by virtue of its easier interpretation, relaxation of orthogonality constraints and its versatility for serving as an alternative classification method. Both the EOF and SOM analyses suggest a classification of “moderate” and “extreme” El Niños by their differences in the magnitudes of the hydrological cycle responses, spatial patterns and evolutionary paths. Classification from the moisture divergence point of view shows consistency with results based on other physical variables such as SST
Hybrid Mechanical Systems
We discuss hybrid systems in which a mechanical oscillator is coupled to
another (microscopic) quantum system, such as trapped atoms or ions,
solid-state spin qubits, or superconducting devices. We summarize and compare
different coupling schemes and describe first experimental implementations.
Hybrid mechanical systems enable new approaches to quantum control of
mechanical objects, precision sensing, and quantum information processing.Comment: To cite this review, please refer to the published book chapter (see
Journal-ref and DOI). This v2 corresponds to the published versio
A Multivariate Approach for Checking Resiliency in Access Control
In recent years, several combinatorial problems were introduced in the area
of access control. Typically, such problems deal with an authorization policy,
seen as a relation , where means that
user is authorized to access resource . Li, Tripunitara and Wang (2009)
introduced the Resiliency Checking Problem (RCP), in which we are given an
authorization policy, a subset of resources , as well as
integers , and . It asks whether upon removal of
any set of at most users, there still exist pairwise disjoint sets of
at most users such that each set has collectively access to all resources
in . This problem possesses several parameters which appear to take small
values in practice. We thus analyze the parameterized complexity of RCP with
respect to these parameters, by considering all possible combinations of . In all but one case, we are able to settle whether the problem is in
FPT, XP, W[2]-hard, para-NP-hard or para-coNP-hard. We also consider the
restricted case where for which we determine the complexity for all
possible combinations of the parameters
- …
