111 research outputs found

    Neurocognitive Effects of Transcranial Direct Current Stimulation in Arithmetic Learning and Performance: A Simultaneous tDCS-fMRI Study

    Get PDF
    BACKGROUND: A small but increasing number of studies suggest that non-invasive brain stimulation by means of transcranial direct current stimulation (tDCS) can modulate arithmetic processes that are essential for higher-order mathematical skills and that are impaired in dyscalculic individuals. However, little is known about the neural mechanisms underlying such stimulation effects, and whether they are specific to cognitive processes involved in different arithmetic tasks. METHODS: We addressed these questions by applying tDCS during simultaneous functional magnetic resonance imaging (fMRI) while participants were solving two types of complex subtraction problems: repeated problems, relying on arithmetic fact learning and problem-solving by fact retrieval, and novel problems, requiring calculation procedures. Twenty participants receiving left parietal anodal plus right frontal cathodal stimulation were compared with 20 participants in a sham condition. RESULTS: We found a strong cognitive and neural dissociation between repeated and novel problems. Repeated problems were solved more accurately and elicited increased activity in the bilateral angular gyri and medial plus lateral prefrontal cortices. Solving novel problems, in contrast, was accompanied by stronger activation in the bilateral intraparietal sulci and the dorsomedial prefrontal cortex. Most importantly, tDCS decreased the activation of the right inferior frontal cortex while solving novel (compared to repeated) problems, suggesting that the cathodal stimulation rendered this region unable to respond to the task-specific cognitive demand. CONCLUSIONS: The present study revealed that tDCS during arithmetic problem-solving can modulate the neural activity in proximity to the electrodes specifically when the current demands lead to an engagement of this area

    Exploring the relationship between video game expertise and fluid intelligence

    Get PDF
    Hundreds of millions of people play intellectually-demanding video games every day. What does individual performance on these games tell us about cognition? Here, we describe two studies that examine the potential link between intelligence and performance in one of the most popular video games genres in the world (Multiplayer Online Battle Arenas: MOBAs). In the first study, we show that performance in the popular MOBA League of Legends' correlates with fluid intelligence as measured under controlled laboratory conditions. In the second study, we also show that the age profile of performance in the two most widely-played MOBAs (League of Legends and DOTA II) matches that of raw fluid intelligence. We discuss and extend previous videogame literature on intelligence and videogames and suggest that commercial video games can be useful as 'proxy' tests of cognitive performance at a global population level

    Electrophysiological dynamics of Chinese phonology during visual word recognition in Chinese-English bilinguals

    Get PDF
    Silent word reading leads to the activation of orthographic (spelling), meaning, as well as phonological (sound) information. For bilinguals, native language information can also be activated automatically when they read words in their second language. For example, when Chinese-English bilinguals read words in their second language (English), the phonology of the Chinese translations is automatically activated. Chinese phonology, however, consists of consonants and vowels (segmental) and tonal information. To what extent these two aspects of Chinese phonology are activated is yet unclear. Here, we used behavioural measures, event-related potentials and oscillatory EEG to investigate Chinese segmental and tonal activation during word recognition. Evidence of Chinese segmental activation was found when bilinguals read English words (faster responses, reduced N400, gamma-band power reduction) and when they read Chinese words (increased LPC, gamma-band power reduction). In contrast, evidence for Chinese tonal activation was only found when bilinguals read Chinese words (gamma-band power increase). Together, our converging behavioural and electrophysiological evidence indicates that Chinese segmental information is activated during English word reading, whereas both segmental and tonal information are activated during Chinese word reading. Importantly, gamma-band oscillations are modulated differently by tonal and segmental activation, suggesting independent processing of Chinese tones and segments

    The relationship between processing speed and regional white matter volume in healthy young people

    Get PDF
    Processing speed is considered a key cognitive resource and it has a crucial role in all types of cognitive performance. Some researchers have hypothesised the importance of white matter integrity in the brain for processing speed; however, the relationship at the whole-brain level between white matter volume (WMV) and processing speed relevant to the modality or problem used in the task has never been clearly evaluated in healthy people. In this study, we used various tests of processing speed and Voxel-Based Morphometry (VBM) analyses, it is involves a voxel-wise comparison of the local volume of gray and white, to assess the relationship between processing speed and regional WMV (rWMV). We examined the association between processing speed and WMV in 887 healthy young adults (504 men and 383 women; mean age, 20.7 years, SD, 1.85). We performed three different multiple regression analyses: we evaluated rWMV associated with individual differences in the simple processing speed task, word–colour and colour–word tasks (processing speed tasks with words) and the simple arithmetic task, after adjusting for age and sex. The results showed a positive relationship at the whole-brain level between rWMV and processing speed performance. In contrast, the processing speed performance did not correlate with rWMV in any of the regions examined. Our results support the idea that WMV is associated globally with processing speed performance regardless of the type of processing speed task

    ‘Medusa head ataxia’: the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 3: Anti-Yo/CDR2, anti-Nb/AP3B2, PCA-2, anti-Tr/DNER, other antibodies, diagnostic pitfalls, summary and outlook

    Get PDF
    Serological testing for anti-neural autoantibodies is important in patients presenting with idiopathic cerebellar ataxia, since these autoantibodies may indicate cancer, determine treatment and predict prognosis. While some of them target nuclear antigens present in all or most CNS neurons (e.g. anti-Hu, anti-Ri), others more specifically target antigens present in the cytoplasm or plasma membrane of Purkinje cells (PC). In this series of articles, we provide a detailed review of the clinical and paraclinical features, oncological, therapeutic and prognostic implications, pathogenetic relevance, and differential laboratory diagnosis of the 12 most common PC autoantibodies (often referred to as ‘Medusa head antibodies’ due to their characteristic somatodendritic binding pattern when tested by immunohistochemistry). To assist immunologists and neurologists in diagnosing these disorders, typical high-resolution immunohistochemical images of all 12 reactivities are presented, diagnostic pitfalls discussed and all currently available assays reviewed. Of note, most of these antibodies target antigens involved in the mGluR1/calcium pathway essential for PC function and survival. Many of the antigens also play a role in spinocerebellar ataxia. Part 1 focuses on anti-metabotropic glutamate receptor 1-, anti-Homer protein homolog 3-, anti-Sj/inositol 1,4,5-trisphosphate receptor- and anti-carbonic anhydrase-related protein VIII-associated autoimmune cerebellar ataxia (ACA); part 2 covers anti-protein kinase C gamma-, anti-glutamate receptor delta-2-, anti-Ca/RhoGTPase-activating protein 26- and anti-voltage-gated calcium channel-associated ACA; and part 3 reviews the current knowledge on anti-Tr/delta notch-like epidermal growth factor-related receptor-, anti-Nb/AP3B2-, anti-Yo/cerebellar degeneration-related protein 2- and Purkinje cell antibody 2-associated ACA, discusses differential diagnostic aspects and provides a summary and outlook

    Working Memory Training Using Mental Calculation Impacts Regional Gray Matter of the Frontal and Parietal Regions

    Get PDF
    Training working memory (WM) improves performance on untrained cognitive tasks and alters functional activity. However, WM training's effects on gray matter morphology and a wide range of cognitive tasks are still unknown. We investigated this issue using voxel-based morphometry (VBM), various psychological measures, such as non-trained WM tasks and a creativity task, and intensive adaptive training of WM using mental calculations (IATWMMC), all of which are typical WM tasks. IATWMMC was associated with reduced regional gray matter volume in the bilateral fronto-parietal regions and the left superior temporal gyrus. It improved verbal letter span and complex arithmetic ability, but deteriorated creativity. These results confirm the training-induced plasticity in psychological mechanisms and the plasticity of gray matter structures in regions that have been assumed to be under strong genetic control

    ‘Medusa head ataxia’: the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 3: Anti-Yo/CDR2, anti-Nb/AP3B2, PCA-2, anti-Tr/DNER, other antibodies, diagnostic pitfalls, summary and outlook

    Full text link

    Coordination Cost and Super-Efficiency in Teamwork: The Role of Communication, Psychological States, Cardiovascular Responses, and Brain Rhythms

    Get PDF
    To advance knowledge on the psychophysiological markers of “coordination cost” in team settings, we explored differences in meta-communication patterns (i.e., silence, speaking, listening, and overlap), perceived psychological states (i.e., core affect, attention, efficacy beliefs), heart rate variability (i.e., RMSSD), and brain rhythms (i.e., alpha, beta and theta absolute power) across three studies involving 48 male dyads (Mage = 21.30; SD = 2.03). Skilled participants cooperatively played three consecutive FIFA-17 (Xbox) games in a dyad against the computer, or competed against the computer in a solo condition and a dyad condition. We observed that playing in a team, in contrast to playing alone, was associated with higher alpha peak and global efficiency in the brain and, at the same time, led to an increase in focused attention as evidenced by participants’ higher theta activity in the frontal lobe. Moreover, we observed that overtime participants’ brain dynamics moved towards a state of “neural-efficiency” or “flow”, characterized by increased theta and beta activity in the frontal lobe, and high alpha activity across the whole brain. Our findings advance the literature by demonstrating that (1) the notion of coordination cost can be captured at the neural level in the initial stages of team development; (2) by decreasing the costs of switching between tasks, teamwork increases both individuals’ attentional focus and global neural efficiency; and (3) communication dynamics become more proficient and individuals’ brain patterns change towards neural efficiency over time, likely due to team learning and decreases in intra-team conflict

    Developmental dyscalculia: a dysconnection syndrome?

    Full text link
    Numerical understanding is important for everyday life. For children with developmental dyscalculia (DD), numbers and magnitudes present profound problems which are thought to be based upon neuronal impairments of key regions for numerical understanding. The aim of the present study was to investigate possible differences in white matter fibre integrity between children with DD and controls using diffusion tensor imaging. White matter integrity and behavioural measures were evaluated in 15 children with developmental dyscalculia aged around 10 years and 15 matched controls. The main finding, obtained by a whole brain group comparison, revealed reduced fractional anisotropy in the superior longitudinal fasciculus in children with developmental dyscalculia. In addition, a region of interest analysis exhibited prominent deficits in fibres of the superior longitudinal fasciculus adjacent to the intraparietal sulcus, which is thought to be the core region for number processing. To conclude, our results outline deficient fibre projection between parietal, temporal and frontal regions in children with developmental dyscalculia, and therefore raise the question of whether dyscalculia can be seen as a dysconnection syndrome. Since the superior longitudinal fasciculus is involved in the integration and control of distributed brain processes, the present results highlight the importance of considering broader domain-general mechanisms in the diagnosis and therapy of dyscalculia
    corecore