7,492 research outputs found
Preconditioners for Wiener--Hopf Equations with High-Order Quadrature Rules
We consider solving the Wiener--Hopf equations with high-order quadrature rules by preconditioned conjugate gradient (PCG) methods. We propose using convolution operators as preconditioners for these equations. We will show that with the proper choice of kernel functions for the preconditioners, the resulting preconditioned equations will have clustered spectra and therefore can be solved by the PCG method with superlinear convergence rate. Moreover, the discretization of these equations by high-order quadrature rules leads to matrix systems that involve only Toeplitz or diagonal matrix--vector multiplications and hence can be computed efficiently by FFTs. Numerical results are given to illustrate the fast convergence of the method and the improvement on accuracy by using higher-order quadrature rule. We also compare the performance of our preconditioners with the circulant integral operators.published_or_final_versio
Applying the selective Cu electroplating technique to light-emitting diodes
[[abstract]]We successfully fabricated a predefined patterned copper (Cu) substrate for thin GaN light-emitting diodes without barriers by the selective electroplating technique. The contours of Cu bumps fabricated using different electroplating modes and parameters were measured. We observed that the average thickness diminished with increasing current density. The current density conditions to obtain the best upright structure in the process were 40 and 80 mA/cm2.[[notice]]補正完畢[[incitationindex]]SCI[[booktype]]紙本[[booktype]]電子
Rings in the Solar System: a short review
Rings are ubiquitous around giant planets in our Solar System. They evolve
jointly with the nearby satellite system. They could form either during the
giant planet formation process or much later, as a result of large scale
dynamical instabilities either in the local satellite system, or at the
planetary scale. We review here the main characteristics of rings in our solar
system, and discuss their main evolution processes and possible origin. We also
discuss the recent discovery of rings around small bodies.Comment: Accepted for the Handbook of Exoplanet
Degenerate Stars and Gravitational Collapse in AdS/CFT
We construct composite CFT operators from a large number of fermionic primary
fields corresponding to states that are holographically dual to a zero
temperature Fermi gas in AdS space. We identify a large N regime in which the
fermions behave as free particles. In the hydrodynamic limit the Fermi gas
forms a degenerate star with a radius determined by the Fermi level, and a mass
and angular momentum that exactly matches the boundary calculations. Next we
consider an interacting regime, and calculate the effect of the gravitational
back-reaction on the radius and the mass of the star using the
Tolman-Oppenheimer-Volkoff equations. Ignoring other interactions, we determine
the "Chandrasekhar limit" beyond which the degenerate star (presumably)
undergoes gravitational collapse towards a black hole. This is interpreted on
the boundary as a high density phase transition from a cold baryonic phase to a
hot deconfined phase.Comment: 75 page
Projection methods in conic optimization
There exist efficient algorithms to project a point onto the intersection of
a convex cone and an affine subspace. Those conic projections are in turn the
work-horse of a range of algorithms in conic optimization, having a variety of
applications in science, finance and engineering. This chapter reviews some of
these algorithms, emphasizing the so-called regularization algorithms for
linear conic optimization, and applications in polynomial optimization. This is
a presentation of the material of several recent research articles; we aim here
at clarifying the ideas, presenting them in a general framework, and pointing
out important techniques
A Functional Safety OpenMP∗ for Critical Real-Time Embedded Systems
OpenMP* has recently gained attention in the embedded domain by virtue of the augmentations implemented in the last specification. Yet, the language has a minimal impact in the embedded real-time domain mostly due to the lack of reliability and resiliency mechanisms. As a result, functional safety properties cannot be guaranteed. This paper analyses in detail the latest specification to determine whether and how the compliant OpenMP implementations can guarantee functional safety. Given the conclusions drawn from the analysis, the paper describes a set of modifications to the specification, and a set of requirements for compiler and runtime systems to qualify for safety critical environments. Through the proposed solution, OpenMP can be used in critical real-time embedded systems without compromising functional safety.This work was funded by the EU project P-SOCRATES (FP7-ICT-2013- 10)
and the Spanish Ministry of Science and Innovation under contract TIN2015-
65316-P.Peer ReviewedPostprint (author's final draft
A metabolite-derived protein modification integrates glycolysis with KEAP1-NRF2 signalling.
Mechanisms that integrate the metabolic state of a cell with regulatory pathways are necessary to maintain cellular homeostasis. Endogenous, intrinsically reactive metabolites can form functional, covalent modifications on proteins without the aid of enzymes1,2, and regulate cellular functions such as metabolism3-5 and transcription6. An important 'sensor' protein that captures specific metabolic information and transforms it into an appropriate response is KEAP1, which contains reactive cysteine residues that collectively act as an electrophile sensor tuned to respond to reactive species resulting from endogenous and xenobiotic molecules. Covalent modification of KEAP1 results in reduced ubiquitination and the accumulation of NRF27,8, which then initiates the transcription of cytoprotective genes at antioxidant-response element loci. Here we identify a small-molecule inhibitor of the glycolytic enzyme PGK1, and reveal a direct link between glycolysis and NRF2 signalling. Inhibition of PGK1 results in accumulation of the reactive metabolite methylglyoxal, which selectively modifies KEAP1 to form a methylimidazole crosslink between proximal cysteine and arginine residues (MICA). This posttranslational modification results in the dimerization of KEAP1, the accumulation of NRF2 and activation of the NRF2 transcriptional program. These results demonstrate the existence of direct inter-pathway communication between glycolysis and the KEAP1-NRF2 transcriptional axis, provide insight into the metabolic regulation of the cellular stress response, and suggest a therapeutic strategy for controlling the cytoprotective antioxidant response in several human diseases
Characteristics of transposable element exonization within human and mouse
Insertion of transposed elements within mammalian genes is thought to be an
important contributor to mammalian evolution and speciation. Insertion of
transposed elements into introns can lead to their activation as alternatively
spliced cassette exons, an event called exonization. Elucidation of the
evolutionary constraints that have shaped fixation of transposed elements
within human and mouse protein coding genes and subsequent exonization is
important for understanding of how the exonization process has affected
transcriptome and proteome complexities. Here we show that exonization of
transposed elements is biased towards the beginning of the coding sequence in
both human and mouse genes. Analysis of single nucleotide polymorphisms (SNPs)
revealed that exonization of transposed elements can be population-specific,
implying that exonizations may enhance divergence and lead to speciation. SNP
density analysis revealed differences between Alu and other transposed
elements. Finally, we identified cases of primate-specific Alu elements that
depend on RNA editing for their exonization. These results shed light on TE
fixation and the exonization process within human and mouse genes.Comment: 11 pages, 4 figure
Seatbelt use and risk of major injuries sustained by vehicle occupants during motor-vehicle crashes: A systematic review and meta-analysis of cohort studies
BackgroundIn 2004, a World Health Report on road safety called for enforcement of measures such as seatbelt use, effective at minimizing morbidity and mortality caused by road traffic accidents. However, injuries caused by seatbelt use have also been described. Over a decade after publication of the World Health Report on road safety, this study sought to investigate the relationship between seatbelt use and major injuries in belted compared to unbelted passengers.MethodsCohort studies published in English language from 2005 to 2018 were retrieved from seven databases. Critical appraisal of studies was carried out using the Scottish Intercollegiate Guidelines Network (SIGN) checklist. Pooled risk of major injuries was assessed using the random effects meta-analytic model. Heterogeneity was quantified using I-squared and Tau-squared statistics. Funnel plots and Egger's test were used to investigate publication bias. This review is registered in PROSPERO (CRD42015020309).ResultsEleven studies, all carried out in developed countries were included. Overall, the risk of any major injury was significantly lower in belted passengers compared to unbelted passengers (RR 0.47; 95%CI, 0.29 to 0.80; I-2=99.7; P=0.000). When analysed by crash types, belt use significantly reduced the risk of any injury (RR 0.35; 95%CI, 0.24 to 0.52). Seatbelt use reduces the risk of facial injuries (RR=0.56, 95% CI=0.37 to 0.84), abdominal injuries (RR=0.87; 95% CI=0.78 to 0.98) and, spinal injuries (RR=0.56, 95% CI=0.37 to 0.84). However, we found no statistically significant difference in risk of head injuries (RR=0.49; 95% CI=0.22 to 1.08), neck injuries (RR=0.69: 95%CI 0.07 to 6.44), thoracic injuries (RR 0.96, 95%CI, 0.74 to 1.24), upper limb injuries (RR=1.05, 95%CI 0.83 to 1.34) and lower limb injuries (RR=0.77, 95%CI 0.58 to 1.04) between belted and non-belted passengers.ConclusionIn sum, the risk of most major road traffic injuries is lower in seatbelt users. Findings were inconclusive regarding seatbelt use and susceptibility to thoracic, head and neck injuries during road traffic accidents. Awareness should be raised about the dangers of inadequate seatbelt use. Future research should aim to assess the effects of seatbelt use on major injuries by crash type
The Expression and Localization of N-Myc Downstream-Regulated Gene 1 in Human Trophoblasts
The protein N-Myc downstream-regulated gene 1 (NDRG1) is implicated in the regulation of cell proliferation, differentiation, and cellular stress response. NDRG1 is expressed in primary human trophoblasts, where it promotes cell viability and resistance to hypoxic injury. The mechanism of action of NDRG1 remains unknown. To gain further insight into the intracellular action of NDRG1, we analyzed the expression pattern and cellular localization of endogenous NDRG1 and transfected Myc-tagged NDRG1 in human trophoblasts exposed to diverse injuries. In standard conditions, NDRG1 was diffusely expressed in the cytoplasm at a low level. Hypoxia or the hypoxia mimetic cobalt chloride, but not serum deprivation, ultraviolet (UV) light, or ionizing radiation, induced the expression of NDRG1 in human trophoblasts and the redistribution of NDRG1 into the nucleus and cytoplasmic membranes associated with the endoplasmic reticulum (ER) and microtubules. Mutation of the phosphopantetheine attachment site (PPAS) within NDRG1 abrogated this pattern of redistribution. Our results shed new light on the impact of cell injury on NDRG1 expression patterns, and suggest that the PPAS domain plays a key role in NDRG1's subcellular distribution. © 2013 Shi et al
- …
